Identification of Plant Species for Crop Pollinator Habitat Enhancement in the Northern Prairies

Diana Bizecki Robson

Abstract


Wild pollinators have a positive impact on the productivity of insect-pollinated crops. Consequently, landowners are being encouraged to maintain and grow wildflower patches to provide habitat for important pollinators. Research on plant-pollinator interaction matrices indicates that a small number of “core” plants provide a disproportionately high amount of pollen and nectar to insects. This matrix data can be used to help design wildflower plantings that provide optimal resources for desirable pollinators. Existing interaction matrices from three tall grass prairie preserves in the northern prairies were used to identify core plant species that are visited by wild pollinators of a common insect-pollinated crop, namely canola (Brassica napus L.). The wildflower preferences of each insect taxon were determined using quantitative insect visitation and floral abundance data. Phenology data were used to calculate the degree of floral synchrony between the wildflowers and canola. Using this information I ranked the 41 wildflowers that share insect visitors with canola according to how useful they are for providing pollinators with forage before and after canola flowers. The top five species were smooth blue aster (Symphyotrichum laeve (L.) A. & D. Löve), stiff goldenrod (Solidago rigida L.), wild bergamot (Monarda fistulosa L.), purple prairie-clover (Dalea purpurea Vent.) and Lindley’s aster (Symphyotrichum ciliolatum (Lindl.) A. & D. Löve). By identifying the most important wild insects for crop pollination, and determining when there will be “pollen and nectar gaps”, appropriate plant species can be selected for companion plantings to increase pollinator populations and crop production.

 

NOTE: Supporting information to this article may be found in the left menu.


Full Text:

PDF




Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

ISSN 1920-7603

 

Google Scholar Profile