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AbstractIn this paper, we develop a method, termed the Interaction Distribution (ID) method, for analysis of 
quantitative ecological network data. In many cases, quantitative network data sets are under-sampled, i.e. many 
interactions are poorly sampled or remain unobserved. Hence, the output of statistical analyses may fail to 
differentiate between patterns that are statistical artefacts and those which are real characteristics of ecological 
networks. The ID method can support assessment and inference of under-sampled ecological network data. In the 
current paper, we illustrate and discuss the ID method based on the properties of plant-animal pollination data sets 
of flower visitation frequencies. However, the ID method may be applied to other types of ecological networks. The 
method can supplement existing network analyses based on two definitions of the underlying probabilities for each 
combination of pollinator and plant species: (1), pi,j: the probability for a visit made by the i’th pollinator species to 
take place on the j’th plant species; (2), qi,j: the probability for a visit received by the j’th plant species to be made by 
the i’th pollinator. The method applies the Dirichlet distribution to estimate these two probabilities, based on a 
given empirical data set. The estimated mean values for pi,j and qi,j reflect the relative differences between recorded 
numbers of visits for different pollinator and plant species, and the estimated uncertainty of pi,j and qi,j decreases 
with higher numbers of recorded visits.  

Keywords: Ecological network, Bayesian method, plant-animal pollination data analysis, under-sampled data sets

INTRODUCTION 

Plant-pollinator interactions are important for 
maintenance of biological diversity, and pollination is a 
valuable ecosystem function for both wild plant communities 
and agricultural production (Potts et al. 2010). Hence, 
anthropogenic changes to the environment have negative 
effects on plants and pollinators, and hence pollination is 
seen as an ecological network (e.g. Biesmeijer et al. 2006; 
Hegland et al. 2009). To better understand mechanisms 
behind such consequences, modelling, interpretation and 
handling of pollination data as ecological networks are 
necessary steps (Potts et al., 2011). 

During the past decade, ecologists have become 
increasingly interested in ecological networks, and network 
analysis is applied to complex patterns of interactions among 
species in food webs, mutualistic and host-parasite networks 
(reviewed by Ings et al. 2009). The application of methods 
of the network analysis has gained new insights into their 
topological patterns, e.g. degree distributions (Jordano et al. 
2003; Vazquez 2005), nestedness (Bascompte et al. 2003; 

Dupont et al. 2003), modularity (Olesen et al. 2007), small 
world properties (Olesen et al. 2006), patterns of 
generalization/specialization (i.e. level of degree) ( 
Bascompte et al. 2006; Olesen and Jordano 2002; Vazquez 
and Aizen 2003), tolerance to species extinction (Fortuna 
and Bascompte 2006; Memmott et al. 2004), and 
phenological shifts (Kaiser-Bunbury et al. 2010; Memmott 
et al. 2007). Network data are often qualitative, i.e. include 
only presence/absence information about species and links; 
however, quantitative networks, which include link strength, 
i.e. visitor/visitation frequencies, are becoming increasingly 
available, and network descriptors based on quantitative data 
have been developed (e.g. Bersier et al. 2002). Such network 
descriptors as well as the outcome of studies on ecological 
networks (e.g. extinction simulations) are highly susceptible 
to the overall number of interactions detected (e.g. stability; 
see Banasek-Richer et al. 2009; Dormann et al. 2009).  

The validity of an interpretation derived from a 
description using network theory depends on the properties 
of the underlying empirical data, and the different sampling 
methods used in pollination network field studies have 
different constraints that deviate from randomness (e.g. 
Gibson et al. 2011). Gathering pollination network data sets 
is resource and time consuming and they are nearly always Received 8 August 2011, accepted 12 December 2011 

*Corresponding author, email: pbs@dmu.dk 



130 THE INTERACTION DISTRIBUTION METHOD J Poll Ecol 6(18) 

 

under-sampled because species or interactions easily escape 
observation (Olesen et al. 2010; Vazquez et al. 2009). 
Moreover, pollination networks are temporally highly 
dynamic, i.e. species and interactions are continuously 
changing (Alarcón et al. 2008; ; Dupont et al. 2009; Olesen 
et al. 2008; Petanidou et al. 2008). In most empirical 
studies, data collection is plant focused (Olesen et al. 2010), 
i.e. a fixed number of plant species are observed for visiting 
pollinators. This may impede our understanding of network 
organization and function. In particular, interactions may 
remain undetected because most flower visits are rare, of 
short duration, and usually do not leave traces on the flower. 
Thus, the number of recorded visits is only a small subset of 
the actual visits made by a species (Blüthgen et al. 2010; 
Goldwasser and Roughgarden 1997). Obviously, the 
problem of under sampling is most severe for larger 
networks. As a rule of thumb, the sampling effort has to 
increase in proportion to the number of interactions, i.e. 
combinations of a pollinator species and a plant species.  

The following question is addressed in this paper in 
order to facilitate further progress for application of network 
data: 

How can we improve the applicability of data sets to support 
network analysis without misinterpretation due to sampling 
bias and inadequate number of data records? 

The problem of under sampling has been statistically 
investigated and modelled (Dormann et al. 2009; Vazquez 
and Aizen 2003) and assuming random sampling. In this 
paper, we propose and discuss a Bayesian approach called the 
ID method and a general concept model to link experiment 
and data analysis to see how this can supplement existing 
methods and, thereby, contribute to better applicability. 
Thus, the hypothesis of this paper is: 

A Bayesian approach and a conceptual model can improve 
the applicability of data sets by setting up a description of 
the probability for a record to involve a specific combination 
of a visitor (pollinator species) and a receptor (plant species)! 

This paper will describe the suggested methods and 
discuss the outcome under on the following headlines: 
- How can the conceptual model clarify the governing 

assumptions underpinning all application of under-
sampled data sets in any type of network analysis?  

- What are the governing assumptions underpinning the 
ID method compared to the alternatives? 

- How can the ID method increase the understanding in 
network analysis? 

- How easy is the application of the ID method? 
- The method is described in the next paragraph followed 

by the discussion to address the questions above. 

METHODS 

Two definitions of underlying probabilities of visits are 
applied for each visit: 

- pi,j: the pollinator focused probability. Out of all visits by 
the i’th pollinator species, pi,j is the probability of a visit 

to take place in the j’th plant species. This is a measure 
of a pollinator species preference for a plant species. 

- qi,j: the plant focused probability. Out of all visits done 
in the j’th plant species, qi,j is the probability of a visit to 
be done by the i’th pollinator. This is a measure of 
pollinator species i’s preference for visiting plant species 
j, relative to the preference of other pollinator species to 
visit the same plant species. 

Thus, the visits to each plant species is considered as a 
multinomial process, where the individual pollinator 
“decides” to visit a plant species with some unknown 
probability. The task of this paper is to estimate possible 
intervals for this probability based on empirical data. 

Conceptual model 

The conceptual model is described based on sets, where 
the set containing all single visits between a single pollinator 
and plant species that took place in the area and period of 
study is denoted A. Every single visit is an element in the set 
A. Set A is divided into subsets as Apolli and Aplj, where 
Apolli is the subset of A, containing all elements in A where 
pollinator i performs the visits and Aplj is a subset of A, 
containing all elements in A where the plant j is being visited. 
All visits will involve one and only one pollinator species (i) 
and plant species (j), respectively, and thus are single 
elements that belong to both the subsets Apolli and Aplj. A 
subset of A is defined as the set containing all recorded 
(collected) visits and denoted as set B, and for set B the 
subsets Bpolli and Bplj are defined for respective pollinator 
and plant species. The conceptual model is illustrated in Fig. 
1 for three pollinator species and four plant species. Hence, 
if a visit is recorded in the data set, then the visit is an 
element that belongs to both set A, Apolli and Aplj and set B, 
Bpolli and Bplj, respectively. 

If all visits in set B are random observations from A 
without bias for any pollinator or plant species, then B is 
claimed to be randomly collected. Thus, a random collection 
assumes that the data collector is not more likely to record 
visits by some species of pollinators, e.g. large conspicuous 
bumble bees, than others, e.g. small flies. A fully random 
collection also assumes that the plant species are randomly 
selected. Thus, if plant species Pl1 receives twice as many 
visits as plant species Pl2, then the probability of an 
observer, in a fully random collection, to observe a visit by 
pollinator of Pl1 is twice as high as the probability of 
observing a pollinator visiting Pl2.  

Thus, for the “ideal” random observer, every visit in the 
study area is equally likely to be observed, and set B is a 
random selection of some of the elements in set A. However, 
for empirical data sets, the set B is rarely a random subset of 
A and its applicability for analysis is, thus, constrained or to 
some degree uncertain. Two typical cases of “non-
randomness” or bias can be defined in the following way: 

Pollinator focused sampling, has random sampling 
within Bpolli, but not between different pollinators and, 
thus, only allows estimating pi,j. This can be illustrated in 
Fig. 1 as a situation where an element placed in Apoll1 is  
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Figure 1. Illustration of the concept model, including three pollinator species and four plant species, with the set of all interactions between 
pollinator and plant species (A) and a subset of recorded interactions (B). The definition of sets in the model concept follows the definitions in the 
text, where every single dot (    ) represents is a visit. 

more likely to be collected than an element placed in Apoll2, 
but within Apoll1 the likelihood for an element to be 
collected is the same for all plant species (Apl1-4). This type 
of randomness will be denoted ‘pollinator focused sampling’ 
and can be used only to estimate pi,j. Data generated with a 
pollinator focus, e.g. by tracking pollinator individuals 
visiting flowers, could be considered as pollinator focused 
sampling. Another reason behind this type of non-
randomness (bias) could be that the observer has more focus 
on the large conspicuous bumble bees than on small flies. If 
this type of sampling is applied for generating data to feed 
network models, then a high connectivity for one pollinator 
species compared to others can be an artefact due to an extra 
intensive sampling effort for that specific pollinator species. 

Plant focused sampling has random sampling within Bplj, 
but not between different plant species and, thus only allows 
estimating qi,j. This can be shown in Fig. 1 as a situation 
where an element in Apl1 is more likely to be collected than 
an element in Apl2, but within Apl1 the likelihood of a 
collection from one of the pollinator species (Apoll1-4) is 
the same. A sampling method that will mimic this situation 
is an approach, where the plant species are recorded by an 
observer who is waiting for the pollinators to arrive to the 
focused upon plant individual. If this type of sampling is 
applied for generating data to feed network models, then a 
high connectivity for one plant species compared to other 
plants in the data set can be an artefact due to an extra 
intensive sampling effort for that specific plant species. 

The data set B is used to make a data table (Table 1) by 
summing the number of elements for every combination of 
pollinator and plant species. This table is termed an 
interaction frequency matrix. Row i in Table 1 contains all 
visits by Bpolli and column j contains all visits received by 
Bplj. The value vi,j is, thus, the number of visits, equivalent to 
the number of elements in Bpolli ∩ Bplj. 

Model equations 

Number of total recorded visits by the i’th pollinator 
species on any plant species in the data set is  

∑
=

=
M

1j

iji vV  1a 

Number of total recorded visits to plant species j by any 
pollinator species is 

∑
=

=
N

1i

ijj vW  1b 

Eqs. 1a and b are based on the definitions in Table 1. 

A row of Mi,i,2i,1 v,...,v,v  values in Table 1 can be 

considered as a vector vj. The number  shows that the 
pollinator i has visited the plant j a total of     vvvvi,ji,ji,ji,j    times. When 
pollinator i makes a visit, then the probability for this visit to 
take place in plant j is pi,j If it is a priori known that 
pollinator species i will never visit plant species j, then this 
combination of i and j is denoted “null” in Table 1, and     vvvvi,ji,ji,ji,j     
must necessarily have been recorded as zero in the data set. 
This situation will occur if plant and pollinator species 
mismatch e.g. in phenology or morphology or in season 
(Olesen et al. 2010). It follows that the probability for a 
pollinator species to visit the plant species must be zero for 
all “null” combinations of i and j, thus, vi,j ≡  0 for all 
combinations of i and j values having a “null” for vi,j . On the 
other hand, a value of 0  v ji, = will not necessarily be a “null” 
value, as it could imply that the pollinator species i so 
seldom visiting plant j that such a visit is not recorded in the 
data set or it may be an unknown null value. 

In conclusion, if the pi,j values are known, it will be 
possible to set up a statistical multinomial model to predict 
the distributions of possible numbers of visits made by a 
pollinator species to different plant species in a data set. The 
challenge is that the pi,j values are unknown and, hence, 
should be estimated from an empirical data set (Table 1). 
The Dirichlet distribution can estimate the distribution of 
possible pi,j values for the multinomial distribution based on 
empirical data (Frigyik et al. 2010).Thus, it follows that if 
we have the correct values for    pi,j, then we can estimate the 
distribution of possible vi,j values, using a multinomial 
distribution as a statistical model based on the total number 

All visits in the  

study area 

Bpl2 

Bpoll1 

Bpoll2 

Bpoll3 

Bpl1 Bpl3 Bpl4 

Collectedvisits 

A B 

Apoll1 

Apoll2 

Apoll3 
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Pollinator 
species 

Plant species Total 
number 
of non-
null 
plant 
species 

Total 
number 
of visits 

 
 
 

1 2 3 4 - j - M 

1 1,1v  2,1v  3,1v  4,1v  - jv ,1  - Mv ,1  m1 1V  

2 1,2v  nullnullnullnull    3,2v  4,2v  - nullnullnullnull    - Mv ,2  m2 2V  

3 1,3v  2,3v  3,3v  4,3v  - jv ,3  - Mv ,3  m3 3V  

4 nullnullnullnull    2,4v  3,4v  4,4v  - jv ,4  - Mv ,4  m4 4V  

- - - - - - - - - - - 

i 1,iv  2,iv  3,iv  4,iv  - jiv ,  - Miv ,  mi iV  

- - - - - - - - - - - 

N 1,Nv  2,Nv  3,Nv  4,Nv  - 5,Nv  - MNv ,  mN NV  

Total 
number of 
non-null 

n1 n2 n3 n4  nj  nM 

 Total 
number of 

visits 
1W  2W  3W  4W  - jW  - MW  

 

of observations. However, because the pi,j values are 
unknown, we can use the data set to find possible values 
based on the assumption that a multinomial distribution is 
more likely to result in the observed data set for some pi,j 
values compared to others. In Bayesian terms, this means that 
the Dirichlet distribution can be used to find this 
distribution of pi,j values as the conjugate prior for the 
multinomial distribution (Frigyi et al. 2010). However, this 
paper will not go deeper into the background of Bayesian 
analysis and will, thus, take this statement for granted. For 
comprehensive data sets (high sampling effort), the Dirichlet 
distribution will be “narrow” and, thus, estimate the pi,j     value 
as narrow (certain) intervals, while a sparse data set (low 
sampling effort) will result in a broad and more uncertain 
estimate of the pi,j values. 

The Dirichlet distribution Dir (α) for pi, where pi is the 

vector of the probabilities pi,1,…pi,m , and α is the parameter 

vector α1,…,αm  is 

( ) ( )[ ] ( )∏
∑

=

−

=

= ⋅









= M

1j

1

ji,M

1j j

M

1j
j

iVi
jp,pf α

αΓ

αΓ

α

C
   2 

Where and ( )Γ  is the gamma function (Evans et al. 

2000). If there are no data (a priori) to consider, then the 
Dir (αι) is assumed to have unified distributions for all 
pi,,1,…pi,m , which is equivalent to stating that “no data” is 
“no knowledge”. The Dirichlet distribution yields a unified 

distribution for pi,1,…pi,m when: α1,…,αm=1 and acts as 
conjugate prior for the multinomial distribution by 

Dir(αi+vi)(Frigyik et al., 2010 ), where vi is the vector of 

Mi,i,2i,1 v,...,v,v  (Countings in Table 1). Thus, 

using α1,…,αm=1 for Dir(αi+vi), the distribution function 
becomes: 

( ) ( )
( )[ ] ( )∏∏ =

=

⋅
+

+= M

1j

v

ji,M

1j ji,

ii
iiVi

ji,p
1v

mV
v,pf

Γ

Γ
  3 

Both pi    and vi are only defined for j values that are not 
“null” in the data set.  

All the considerations above can be repeated for the 
probabilities qi,1,...qi,M and the vector vi of jNjj vvv ,,2,1 ,...,, in 

order to investigate the probabilities for different pollinator 
species to visit plant species j. This yields a similar equation 
for qi,j , 

( ) ( )
( )[ ] ( )∏∏ =

=

⋅
+

+
=

N

1i

v

ji,M

1j ji,

jj

jjWj
ji,q

1v

nW
v,qf

Γ

Γ
  3b 

Where qi is the vector of the probabilities qi,1,…qi,m. Both 
qi and vi are only defined for i values that are not “null” in 
the data set. 

The following necessary relations are true for the 
probabilities: 

∑
=

=
M

j

jip
1

, 1   4a 

The probability for a pollinator to visit any possible 
plant when it makes a visit is 1 

Table 1. The data 
matrix of visitation data 
(interaction frequency 
matrix),with the recorded 
number of visits by 
pollinator i onto plant j. N 
and M are numbers of 
pollinator and plant species 
in the data set, respectively. 
The null values are used for 
combinations of pollinator 
species and plant species 
where visits are known to be 
impossible. 
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∑
=

=
N

i
jiq

1

, 1   4b 

The probability of a plant receiving a visit from any 
possible pollinator when it gets a visit is 1 

 

It can be shown (Frigyik et al., 2010) that the density 
distribution (marginal distributions) of pi,j and qi,j, 
respectively, can be described by the beta function as: 

( ) 1)vVm;vbeta(1pf ji,iiji,ji,pij −−++=   5a 

( ) )1;1( ,,, −−++= jiiijijipij vWnvbetaqf  5b 

The Beta distribution has some simple statistical 
properties (see e.g. Evans et al., 2000). Hence, using Eqs. 5a 
and b, we find mean (E) and variance (VAR) for pi,j and qi,j: 

( )
ii

ji

ji
Vm

v
pE

+
+

= ,

,

1
 6a 

( )
ii

ji

ji
Wn

v
qE

+
+

= ,

,

1
 6b 

( ) ( ) ( )( )
ii

jiji

ji
Vm

pEpE
pVAR

++
−⋅

=
1

1 ,,

.  7a 

( ) ( ) ( )( )
jj

jiji

ji
Wn

qEqE
qVAR

++
−⋅

=
1

1 ,,

.  7b 

 

Increasing values for Vi and Wj will lead to a greater 
increase in the nominator relative to the denominator in Eqs. 
7a and 7b, and VAR(), therefore, will decrease when the 
number of records is increased. Hence, pij and qi,j become 
increasingly precisely estimated for an increasing number of 
records. This also applies to cases where additional records 
are not related to specific pollinator or plant species 
(different i or j value). 

It is possible to make a simplified uncertainty assessment 
of the under-sampled data sets based on the binominal 
distribution and pi,j or qi,j respectively. 

),,( ,, jiijivij pVvBinf =  8a 

),,( ,, jijjivij qWvBinf =  8b 

Where  

jiiji pVvE ,, )( ⋅=  9a 

jijji qWvE ,, )( ⋅=  9b 

If the values of pi,j  and qi,j are assumed to be known or 
estimated using Eq. 6a or b, respectively, then it is possible 
to estimate the interval of “realistic” vi,j values that can be 

recorded out of all Vi or Wj records for pollinator i. The 
variance of vi,j can be estimated in cases where the normal 
approximation is valid: 1, >>⋅ jii pV  or 1, >>⋅ jij qW and 

( ) 11 ,, >>−⋅⋅ jijii ppV  or ( ) 11 ,, >>−⋅⋅ jijij qqW  as  

)1()( ,,, jijiiji ppVvVAR −⋅⋅≈  10a 

)1()( ,,, jijijji qqWvVAR −⋅⋅≈  10b 

Combining Eqs. 6a and b with 10a or 10b yields a 
simple rough estimate for the variance of vi,j: 










+
+

−⋅
+
+

≈
ii

ji
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jii

ji
Vm

v
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,,

,

1
1

)1(
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










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+
+
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+
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≈
jj

ji

ji
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ji
Wn

v

Wn
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vVAR ,,

,

1
1

)1(
)(  11b 

If the normal approximation is valid, then it will also be 

true that 1, >>jiv and, in many cases, also ii mV >> or 

jj nW >> , yielding the following simple but rough estimate 

for the variance: 









−⋅≈

i

ji

jiji
V

v
vvVAR

,

,, 1)(  12a 














−⋅≈

j

ji

jiji
W

v
vvVAR ,

,, 1)(  12b 

NUMERICAL EXAMPLE FOR ILLUSTRATION 

The principle of the method is best illustrated by a 
simple artificial numerical example. Real data sets will, 
typically, be much larger, so a smaller numerical example is 
chosen for the purpose of illustration. The data set includes 
three pollinator species (rows) and two plant species 
(columns) (Table 2).  

The distribution of p and q is calculated using Eqs. 5a 
and b, respectively, and the results are shown in Fig 2a-f. 

The Poll 1 and Pl 1 combination in Table 2 shows a 
situation where Poll 1most frequently visits this plant and, 
thus, a density distribution (Fig. 2a) for p1,1 that is located 
mainly above 0.5. On the other hand, the plant species 
receives more visits from Poll 2, so the value of q1,1 is smaller 
 

Table 2. Illustrative data set for three pollinator and two plant 
species 

 Pl1 Pl2 Total 

Poll1 10 5 15 
Poll2 50 3 53 
Poll3 0 6   6 

Total 60 14  
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 1  Pl 1 Pl 2 

Poll 1 

 
0 0.25 0.5 0.75 1

 

Poll 2 

  

Poll 3 

0 0.25 0.5 0.75 1
 

0 0.25 0.5 0.75 1
 

fq11 

fp11 

fp12 

fq12 

fp22 

fq22 

fp21 

fq21 

fq31 

fp31 

fq32 

fp32 

f f 

f f 

f f 

p, q p, q 

p, q p, q 

p, q p, q 

2b 2a 

2d 2c 

2f 2e 

 

than 0.5. The limited number of total recorded visits for 
Poll 1 results in a wider distribution (larger VAR()) of the 
p1,1value compared to the stronger (smaller VAR()) 
determination of the q1,1 value. A similar relation, where the 
strength of the estimation is highly different, is also shown 
for the Poll 2 and Pl 2 combination (Fig. 2d), but the roles 
of pollinator and plant are reversed. The Poll 2 and Pl 1 
combination (Fig. 2c) shows a situation with a larger number 
of records, yielding a good determination of both 
probabilities. Poll 3 only visited Pl 2 and was only recorded 
six times in total. From the data, one may conclude that Poll 
3 is not visiting Pl 1. However, due to the low number of 
records, this may simply be a result of small sample size. The 
curve for p3,1 in Fig. 2e shows that the probability for Poll 3 
to visit Pl 1, when Poll 3 is visiting either Pl 1 or 2, is less 
than 0.25, but markedly above zero. However, if the 
question is reversed, i.e. ’what is the probability of a visit to 
Pl 1 by Poll 3’ (q3,1), the result is dramatically different, i.e. a 
probability close to zero is highly probable due to a high 
number (60) of visits observed at Pl 1, but none were by 
Poll3, so in this case the ID method may have identified an 
unknown “null value”. 

The Dirichlet distribution function (Eq. 3b) for Pl 2 is 
shown in Fig. 3. 

The dynamics of the multivariate probability are shown 
in Fig 3. For instance, the distribution for q1,2 (visits by Poll 

1 to Pl 2) depends on the value of q3,2, (visits of Poll 3 to Pl 
2). Hence, if the q3,2 value is high, then it leaves smaller 
likelihood and variation for q1,2, because q3,2+q1,2+q2,2 = 1, 
which forces the density distribution for q1,2 to level out for 
larger values of q3,2.  

The distribution functions listed in Fig. 2a-f indicate the 
sampling uncertainty for the data in Table 2, where a wide 
 

 
Figure 3. The Dirichlet distribution function for Pl 2 showing 

q3,2 and q1,2, where q2,2 has been determined for all combinations of 
q3,2 and q1,2 as 1-q3,2-q1,2. 

Figure 2a-f. Graphic 
display of eqs. 5 a and b for 
the data in Table 2, where the 
y-axis is the probability density 
for p and q, and the x-axis is 
the values of p and q 
(continuous line: function of p, 
dotted line: function of q). 
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distribution predicts a high uncertainty due to a limited 
number of records. However, it is also possible to make a 
simple assessment of the uncertainty based on Eqs. 11a or 
12a if relatively many records ( 1, >>⋅ jii pV  and 

( ) 11 ,, >>−⋅⋅ jijii ppV ) are available. This can be 

considered as a valid approximation for e.g. Pl1 in Table 2.  

For cases in which few records are found (e.g. v22 in 
Table 2 there are only three recorded visits), the normal 
approximation is invalid and the Eqs. 11a and 12a are 
useless. So, in this case, the uncertainty of the recorded 
number needs to be assessed based on the Eqs. 5a or b and 
8a or b. For v2,2 in Table 2, two questions could be “what 
values can v2,2 take if 53 visits are recorded by poll2” or 
“what values can v2,2 take if 14 visits are received by Pl2”. A 
nested Monte Carlo algorithm is used to find the answers. If 
the function F(x) is the accumulated density distribution 
function for the parameter x, then the value of F(x) is 
defined for the interval 0-1,and the principle in the Monte 
Carlo algorithm is to let the computer draw a number at 
random within the interval of 1-0- and then use the inverse 
F(x), F-1(x) to find the corresponding value of x. This can be 
done in a simple spreadsheet without a comprehensive 
mathematical effort if the inverse functions exist in the 
software. The principle is firstly to compute a value of p2,2 or 
q2,2 using a random number (0-1) as input to the inverse 
accumulated Beta distribution and the parameters defined in 
Eqs. 5a or b. Secondly, the obtained values of p2,2 or q2,2 are 
used as input to Eq. 8a or 8b to draw a value of v2,2. The 
sequential procedure is repeated e.g. 10 000 times to make a 
set of v2,2 values. The results are shown in Fig. 4 using both 
p2,2 (Eqs. 5a and 8a) and q2,2 (Eqs. 5b and 8b). Fig. 4 shows 
that the recorded value of v2,2 for any re-sampled data set of 
this size will be in the interval of 0-9 (or 10) visits, with 1-4 
visits being the most likely values.  

It is also possible to re-sample a whole data set and use 
these re-sampled data to test robustness of network 
descriptors calculated based on the data. The replication can 
be repeated thousands of times to find the percentile of the 
calculated descriptors, and the following example 
demonstrates how the ID method is easily applied for this 
purpose. The principle of the simulated re-sampling is to let 
the computer “sample” the data set: (1) Estimate the 
probability of “observing” a visit in the next sample for each 
combination of pollinator and plant species; (2) Use that 
probability to let the computer draw (decide) which 
combination to be sampled, as described in the text above 
Figure 4; (3) Repeat the item 1 and 2 until the number of 
data records is similar to the number in the original data set. 
The probability of “observing” a visit ( jiPs , ) is calculated 

as: 

jiiji pQPs ,, ⋅=   13  

Where iQ is the probability of the simulated “observer” 
observing the pollinator species i without distinguishing 
between the plant species involved. The reasoning behind 
Eq. 13 is that the probability of observing the i’th pollinator 
species on the j’th plant species is equal to the probability of 
the i’th pollinator species to be observed as a visitor for any 
plant species and multiplied with the probability for the i’th 
pollinator to visit the plant species j when the pollinator 
species is observed. The Dirichlet distribution can be used to 

estimate the iQ value based on the Ni VVVV ,,,,, 21 ⋅⋅⋅⋅⋅⋅  

values defined in Table 1. Instead of estimating the qi,j as the 
probability of pollinator species i to visit the plant species j , 
we are now estimating the probability of pollinator species i 
to visit any plant species. So the principle of using the 
Dirichlet distribution remains for the merged data: 
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Figure 4. Nested Monte 
Carlo estimation of the 
probability for getting different 
v2,2 values in a re-sampled data 
set, where in total 53 recordings 
are made of pollinator species 2 
(to estimate p2,2) and 14 
recordings are made for plant 
species 2 (to estimate q2,2). 
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Where Q and V are the vectors: Ni QQQQ ,,, ,21 ⋅⋅⋅⋅⋅⋅ and 

Ni VVVV ,,,,, 21 ⋅⋅⋅⋅⋅⋅  respectively.  

Thus, the probability of obtaining a record of the i‘th 
pollinator and the j’th plant species is a product of two 
probabilities, each being estimated by the data set using a 
Dirichlet distribution. It is possible to generate a random 
number that follows the Dirichlet distribution using an 
inverse Gamma distribution (see the algorithm in Frigyik et 
al. 2010). The principle of generating a single simulated data 
set, based on the Eqs. 3a, 13 and 14, is illustrated in Figure 5 
for the data set in Table 2. The procedure in Figure 5 can be 
repeated to make a larger number of simulated data sets. 

DISCUSSION 

Clarification of governing assumptions for 

application of under-sampled data sets 

The governing assumptions underpinning application of 
under-sampled data sets are evaluated using a conceptual 
model (Figure 1). This model can help to specify the type of 
probability that can be estimated based on the data 
depending on how the data are collected. An ideal data set is 
a random sample of visits without considering the pollinator 
or plant species, however, such a data set is difficult to 
obtain. If the governing assumption of sampling randomness 
is not fulfilled, then it conflicts with many descriptors that 
have been calculated based on the network analysis. Despite 
this, many cases of data collection are plant focused (Olesen 
et al. 2010) and this will only support the calculations of 
descriptors for each plant species separately. If the data are 
completely randomly sampled, then the ID method can 
estimate meaningful values for both q and p. However, in 
case of plant focused sampling, only q is meaningful, and in 
case of pollinator focused sampling, only p is meaningful. 
This problem of missing randomness should be consulted as 
a preliminary step before application of nearly any mutual 
network analysis method. This involves a careful description 
of the data collection protocols to display any form of 
potential bias. The conceptual model can help to clarify the 
usefulness of data set in network analysis by specifying the 
meaning of pollinator focused and plant focused data sets, 
respectively.  

Assumptions underpinning the ID method 

In plant-pollinator networks, some interactions never 
occur (termed forbidden links), for instance due to 
morphological and phenological mismatching (Jordano et al. 
2003; Olesen et al. 2010). It may be well known that some 
pollinator species in the data set avoid visiting some plant 
species in the data set, and in this case it will improve the 
predictive power of the ID method to set the values in the 

data set (Table 1) as “null”. The a priori assumption of the 
remaining “allowed” combinations of pollinator and plant 
species is that the plant species are equally likely to be visited 
by any allowable pollinator species, and all pollinator species 
are equally likely to visit any allowable plant species. This is 
described in Eqs. 6a and b, where the expectation for p and q 
is 1/mi and 1/nj, respectively, if there are no records in the 
data set (Vi =Wj=0). The estimated probabilities can 
deviate more and more strongly from being equal distributed 
as the amount of data records increases.  

A strength of the ID method is that, in contrast to other 
methods described in e.g. (Dormann et al. 2009), there is no 
need to assume any distribution of the data (log Normal or 
others) to be valid. Such additional assumptions open up for 
two types of uncertainties: (1) The structural uncertainty, 
where the form of the assumed distribution function may 
not be correct as description of the variability, e.g. it may 
allow nearly infinite high sampling values or more or less 
unknown truncations, (2) Parametric uncertainty, where the 
values of the distribution parameters (mean value, standard 
deviation etc.) may not be known for certain. This does not 
mean the ID method is always the best choice, as this 
depends on the condition of the data set and other sources 
of information in the particular case. If there are information 
available to parameterise and validate assumed distribution 
functions the statistical method as presented in (Dormann et 
al. 2009) could turn out to be as good or event better than 
the ID method. The ID method has a potential to be used 
especially when the validity of additional assumptions, others 
than given in the concept model, are insufficiently 
documented.  

The ID method represents the simplest form for 
Bayesian approach, and in future activities it may be possible 
to develop more complex methods that better can take 
different type of a priori biological knowledge into account.  

Methodological outcome as a contribution to 

better understanding 

The ecological interpretation of p and q depends on the 
temporal and spatial scale of the data. If the data are 
collected over a few days in a local site where all pollinators 
have been foraging on the same plants and under more or 
less constant weather conditions, then p will reflect the real 
behaviour of the pollinators when they are choosing between 
different species of plants, and q will reflect a joint result of 
both pollinator abundance and behaviour. On the contrary, 
if the data are collected during a longer period, then some of 
the recorded plant species in the data set may not have been 
flowering synchronically during the investigation period 
(Olesen et al. 2010). In this type of data, a high pi,j value can 
either be due to the fact that plant species j is attractive 
compared to other plant species, or due to the fact that plant 
species j was the only one to blossom and, thus, to be visited 
during a critical period within the data collection. Similarly, 
a high qi,j value can be due to the fact that either plant species 
j is attractive to pollinator species i compared to other 
pollinator species, or because pollinator species i was the 
only pollinator to be active during the flowering period of 
plant species j. For larger areas, the recorded pollinators may  



December 2011  SØRENSEN ET AL.  

 

137

Figure 5. Principle of resampling of 74 records to generate a synthetic data set on basis of the data set shown in Table 2. The original data set is 

used in the inverse Gamma distribution to draw stocastgically 74 set of respectively, iQ and ji,p  values from their respective Dirichlet 

distributions. The values of iQ  and ji,p  are multiplied (Eq. 13) and used to make a biased random selection of which pollinator to “sample”. 

Thus, if 1,11 pQ ⋅ = 0.130 then there is a 13.0 % change to “sample” the Poll1/Pl1 combination. Finally all the “synthetic” observations are 

counted to yield the synthetic data set for 74 observations. 

not have been foraging in the same local area. In this case, 
the availability of plant species may not have been the same 
for different pollinator species, depending on their foraging 
radius and local abundance. In all cases, the values of p and q 
disclose important ecological information, and the certainty 
of the estimates will show the statistical usefulness of the 

under-sampled data for any quantitative interpretation. In all 
cases, the ID method can compile the data set to find 
statistical information about the interactions, but the 
interpretation of the results depends on the actual 
background of the data set. 

iQ  1 2 - - 74 

Poll1 0.218 0.176 - - 0.206 

Poll2 0.688 0.730 - - 0.687 

Poll3 0.094 0.094 - - 0.107 

 

 Pl1 Pl2 Total (V) 

Poll1 10 5 15 

Poll2 50 3 53 

Poll3 0 6 6 

 

74 sets of pi,j values are drawn from 

the Dirichlet distribution (Eq. 3a) 

using inverse Gamma distribution 

The recorded data 

with 74 records 

(Table 2) 

 1 2 - - 74 

Pl1 Pl2 Pl1 Pl2 - - Pl1 Pl2 

Poll1 0.595 0.405 0.670 0.330 - - 0.516 0.483 

Poll2 0.954 0.046 0.907 0.093 - - 0.886 0.113 

Poll3 0.001 0.999 0.298 0.702 - - 0.338 0.661 

 

iji Qp ⋅,
 

(Eq. 13) 

1 2 - - 74 

Pl1 Pl2 Pl1 Pl2 - - Pl1 Pl2 

Poll1 0.130 0.089 0.118 0.058 - - 0.106 0.100 

Poll2 0.657 0.031 0.663 0.068 - - 0.610 0.078 

Poll3 0.000 0.093 0.028 0.065 - - 0.036 0.070 

 

Selection 1 2 - - 74  Countings Syntethic data set 

Pl1 Pl2 Pl1 Pl2 - - Pl1 Pl2  Pl1 Pl2 

Poll1  x    - -  x  Poll1 6 7 

Poll2   x  - -    Poll2 51 4 

Poll3     - -    Poll3 0 6 

 

Counts the 

number of 

selections 

74 sets of Qi values are drawn from 

the Dirichlet distribution (Eq. 14) 

using inverse Gamma distribution 

Joint probability for 

sampling the poll and 

pl combination in each 

of the records 1,2..74 

jip,



138 THE INTERACTION DISTRIBUTION METHOD J Poll Ecol 6(18) 

 

The probabilistic property of respectively pi,j and qi,j 

makes them directly applicable for the entropy (Shannon) 
based indexes (Dormann et al., 2009). The ID method can, 
in contrast to existing approaches, generate synthetic data for 
construction of networks whiteout assuming any density 
function to govern the recorded number of visits (see Figure 
5) and without assuming any fixed number of observations 
for pollinators and/or plants other than a fixed total number 
of records. The simulated data set can test any network 
calculation. e.g. the d’ and H2’ indexes suggested by 
(Blüthgen et al. 2006), using the real data set and many 
(more than 1 000) of the simulated data sets, respectively.  

Application 

The ID method has a general relevance for many 
resource-consumer networks for which the conceptual model 
(Fig 1) and data sets as defined in Tab. 1 apply. An add in 
for Excel 2010 and a related short tutorial, is made as 
supplementary material to this paper that runs the algorithm 
in Fig. 5. An empirical but close approximation to the invers 
gamma distribution is used in this add in to speed up the 
calculations and the add in will be continuously extended in 
the future. For all interested parties, it is possible to attend a 
mailing list by sending an e-mail to the first author of this 
paper. Definitely, software exists that can handle the 
Dirichlet distribution directly, e.g. Mathematica 
(http://www.wolfram.com/mathematica/) or R 
(http://www.r-project.org/). 
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