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NOVEL DATA SUPPORT MODEL LINKING FLORAL RESOURCES AND HONEY 

BEE COMPETITION WITH BUMBLE BEE ABUNDANCES IN COASTAL SCRUB 

Diane M. Thomson* 

W.M. Keck Science Department, The Claremont Colleges, 925 N. Mills Avenue, Claremont, CA 91711 

Abstract—Growing evidence supports that many bee populations are declining, with potentially serious 
consequences for pollination services. Mechanistic models that predict bee abundances from drivers like floral resource 
availability can be a powerful way to understand and address declines, but remain rare and largely unvalidated. I used 
temporally and spatially novel data to validate previous analyses linking bumble bee (Bombus spp.) declines in 
California coastal scrub with loss of floral resources, mediated by drought and competition with non-native honey 
bees (Apis mellifera). New observations from 2015-2018 were combined with data from 1999-2014 to further test 
these mechanistic hypotheses and evaluate predictions of a statistical model for Bombus abundances. As predicted, 
positive associations between spring rainfall and floral abundances and between Bombus and key forage plants were 
consistent between time periods. Increased A. mellifera abundance corresponded with reduced Bombus use of the most 
abundant forage plant and lower Bombus abundances in the following year. Quantitative predictions from the Bombus 
statistical model previously developed for 1999-2014 were relatively unbiased and strongly rank correlated with either 
spatially or temporally novel data. However, the model consistently underpredicted Bombus abundances when both 
flower patch and time period were novel. Overall, four new years of data further strengthen evidence that loss of floral 
resources due to drought and competition with feral Apis mellifera is an important cause of Bombus decline in this 
habitat. These findings reinforce the value of even simple models that are mechanistically framed, both in 
understanding past patterns of change and for qualitative prediction.  
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INTRODUCTION 

Growing evidence supports that a number of bee 
populations around the world are declining, raising concerns 
about effects on pollination services for both crop and wild 
plants (Powney et al. 2019; Sánchez-Bayo & Wyckhuys 
2019). Numerous potential causes have been hypothesized, 
including loss of floral resources and nesting habitat, disease 
and parasites, introduced competitors, pesticides, and climate 
change (Goulson et al. 2015; Soroye et al. 2020). Most bee 
habitats are under stress from multiple impacts and their 
potential interactions, complicating efforts to predict 
population trends and evaluate conservation strategies. 

One important challenge in untangling these multiple 
effects on bee populations is a lack of predictive models that 
link environmental conditions such as floral resource 
availability to population change. Most evidence of declines is 
indirect, for example decreases in community diversity relative 
to historic museum collections (Bartomeus et al. 2019). Even 
where population trends can be documented this may not 
illuminate the causes, and patterns shown for one time period 
can change in another (Thomson 2019). The scarcity of 
research modelling factors that drive variation in bee 
populations reflects limited availability of abundance and 

demographic data, although a growing number of recent 
studies has begun to address this gap (Thomson & Page 
2020). Still, relative to the widespread use of models for many 
other taxa, such approaches are rare for bees. 

Over the last decade, a small number of statistical models 
linking floral resource availability and bee colony or 
population growth have been developed for both natural and 
agricultural landscapes (Thomson & Page 2020). Floral 
resources in turn may connect with climate changes such as 
drought frequency (Thomson 2016) or timing of snow melt 
(Ogilvie et al. 2017), or with habitat characteristics like crop 
composition and diversity (Hass et al. 2019). The presence of 
floral resource effects across multiple studies suggests 
potential strategies to benefit bees, such as wildflower strips. 
At the same time, spatial and temporal variation in floral 
resources often correlates with other habitat characteristics 
like nest site availability or pesticide use. This limitation raises 
questions about whether floral resources are in fact a primary 
driver of variation in bee populations, and whether models 
based on resources can be used to predict population change. 

Ecologists broadly agree that both explanatory and 
predictive models should be evaluated by comparison to 
independent data (Mouquet et al. 2015; Houlahan et al. 
2017; Yates et al. 2018). In practice, validating models this 
way can be challenging. Data scarcity makes it difficult to 
withhold observations from model estimation for testing. The 
most widespread approaches sequentially assign different 
parts of a data set for test purposes (cross-validation), but do 
not assess whether models can explain conditions beyond the 
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temporal or spatial range of observations used to develop them 
(Wenger & Olden 2012). Statistical methods such as model 
selection with AIC are a common alternative for evaluating 
relative model performance. Yet model selection procedures 
can promote overfitting or misidentify the most important 
predictors (Houlahan et al. 2017; Clark et al. 2020). Such 
findings illustrate how gaps in our understanding of 
underlying mechanisms may be masked by a failure to validate, 
reinforcing the important of challenging models that inform 
conservation with novel data. 

In this study, I used both spatially and temporally novel 
data to validate previous analyses of a local decline in bumble 
bee (Bombus spp.) abundances in coastal California 
(Thomson 2016). These analyses were originally developed 
from 12 years of monitoring data (1999-2014) in 10 patches 
of flowering central California coastal sage scrub, each patch 
on the order of several hundred meters in size. Statistical 
modeling with the 1999-2014 data identified increased 
competition with non-native, feral honey bees (Apis mellifera) 
and decreases in key forage plants due to drought as the likely 
causes of a declining trend in Bombus abundance. I carried out 
an additional four years of data collection from 2015-2018, 
including almost all patches used in the original model 
development and several new ones. 

I first used the new (2015-2018) data to reevaluate 
relationships between precipitation, floral resources, and A. 
mellifera and Bombus competition identified in the 1999-
2014 study (Thomson 2016). Three main patterns from the 
1999-2014 data formed the mechanistic hypotheses: (1) 
Lower spring rainfall leads to reduced floral resources, but 
more so for species preferred by Bombus than the community 
dominant plant most visited by A. mellifera, Eriophyllum 
staechadifolum; (2) Bombus forage less on E. staechadifolum 
in years of higher A. mellifera abundance due to increased 
competition, contributing to lower niche overlap; (3) High A. 
mellifera abundance and the associated reduction in niche 
overlap correspond with lower Bombus abundance in the 
following year. I assessed whether these relationships were still 
well supported for the full time series after including the four 
most recent years (1999-2018). Finally, I tested (4) how well 
the 1999-2014 fixed effects statistical model for Bombus 
abundances predicted new data. I compared performance of 
the Bombus abundance model in predicting three kinds of 
novel data, observations collected in: (a) 1999-2014 from 
flower patches not used in the original model selection 
(spatially novel); (b) 2015-2018 from the original flower 
patches (temporally novel); and (c) 2015-2018 from all 
flower patches (both spatially and temporally novel). 

MATERIALS AND METHODS 

Study system  

I counted feral Apis mellifera and Bombus foragers from 
late June to early July in patches of coastal scrub on the central 
coast of California (Landels-Hill Big Creek Reserve, Lucia, 
CA, USA, 36°4’14”N, 121°35’25”W). This plant 
community contains a mix of shrubs and mostly perennial 
herbaceous species. Summer flowering concentrates at lower 
elevations (< 350 m), where coastal fog buffers temperature 

and water stress. Visits to four plant species (Eriophyllum 
staechadifolium [Asteraceae], Scrophularia californica 
[Scrophulariaceae), Stachys bullata [Lamiaceae], and Phacelia 
malvifolia [Boraginaceae) encompassed 94.3% of all A. 
mellifera (N = 27,171) and 94.7% of Bombus (N = 6,859) 
foragers counted during this mid-summer period since 1999. 
Almost all Bombus were from the B. vosnesenskii/ B. 
caliginosus color morph, and so could not reliably be 
identified to species on the wing. I collected B. caliginosus 
more than B. vosnesenskii (1996-2015: 63.7%, N = 91 
specimens in color morph), particularly after 2010 (84.6%, 
N = 52). Bombus californicus (N = 12 total observations) 
and B. melanopygus (N = 4) foragers were recorded only 
rarely. 

Monitoring of bee abundances started in 1999 and 
continued through 2018, except in 2001-2002 and 2008. 
Not all patches were sampled in every year (Thomson 2016). 
The new data collection from 2015-2018 included 9 of the 
10 patches previously used to model Bombus abundances 
(Thomson 2016), for on average 2.9 years each (Appendix 1, 
Tab. S2). Monitoring of the tenth original patch stopped in 
2007 because of vegetation changes and associated loss of bee 
forage plants. Distance to the nearest neighbouring patch 
ranged from 100 to 500 meters for these original patches. 

 Data collection from 2015-2018 also included 5 patches 
not used in the earlier analyses (Thomson 2016). Three of 
these patches were sampled in an average of four years prior 
to 2015 and 2.7 years in 2015-2018. The original analyses 
did not include them due to close spatial proximity with 
another patch (1 patch) or because by 2014 fewer than three 
years of data were available (2 patches). These three patches 
were each within 20 to 35 m of another patch. I also added 
two new patches after 2015 (N = 2 and N = 3 years of data). 
One of these new patches is approximately 150 m and the 
second approximately 1000 m from the next-closest patch.  

Weather variables 

I used the same independent variables to characterize 
yearly weather conditions as in the original analyses 
(Thomson 2016): total growing season precipitation (Sept. 1- 
Aug. 31), days of spring rainfall (March 15 to May 15), and 
a metric of precipitation timing that helped control for 
differences in floral and Bombus phenology among years. The 
precipitation timing (phenology) measure came from 
multiplying each daily precipitation total from January 1 to 
July 1 by the day in year, then taking the mean. This yielded a 
mean daily rainfall weighted by day in year, with higher values 
indicating that more precipitation occurred later in spring. 
This precipitation timing measure correlated strongly with the 
ratio between buds and open inflorescences for E. 
staechadifolium, the latest flowering of the major floral 
resources, from 2009-2014 (r = 0.99) (Thomson 2016). 

The 8 years prior to 2015 were relatively dry, with 6 
experiencing less rainfall than the 1999-2018 annual average 
(mean ± one SE: 31.4 ± 3.7 cm for 2007-2014; 39.7 ± 3.5 
cm for 1999-2018). In contrast, two of four rain years in 
2015-2018 were above the study average, including the 
wettest year observed since 1999 (Appendix 1, Tab. S1). For 
the other two weather variables, values observed in 2015-
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2018 fell within the range for 1999-2014 (Appendix 1, Tab. 
S1). 

Data collection 2015-2018 

Patches were sampled on 6 to 8 consecutive days each 
year, between June 29 and July 13. I recorded A. mellifera and 
Bombus forager numbers with the same methods as in 1999-
2014 (Thomson 2006, 2016). Visual counts were made in 
each patch by walking a single transect extending 25-100 m 
along the edge, looking approximately 5 m into the vegetation 
for foraging bees. In every year, I collected data for one 
observation period per sampled patch during each of three 
times: morning (9:00-12:00), midday (12:00-15:00), and 
afternoon (15:00 to dusk). During each observation period I 
walked the transect from beginning to end 3 times and 
recorded all A. mellifera and Bombus foragers by plant species, 
with the starts of these replicate counts 15 minutes apart. This 
resulted in a total of 9 transect counts per patch for a given 
year. Air temperature and relative humidity were measured at 
the beginning and end of every observation period using a 
sling psychrometer.  

I also estimated floral resource abundance with the same 
methods as in 2009-2014. Flowering stems were recorded for 
each patch and plant species along the same transect used for 
bees. I counted stems in 0.2 m sections of the transect spaced 
evenly at 1 m intervals, looking approximately 5 m into the 
patch. Plant species flowering in more than 40% of these 
subsamples were recorded at 2 m rather than 1 m intervals. I 
counted the total number of flowering stems along the whole 
transect for any visited plant species not found in at least 10% 
of subsamples. I also recorded the number of open flowers (or 
inflorescences for E. staechadifolium) per stem for each 
species (minimum N = 10 stems per transect). 

Data analysis 

All forager counts and floral abundance data were 
aggregated by patch and year, so a replicate is the annual mean 
for one patch (Thomson 2016). I calculated floral density/m 
for each plant species by combining mean stem densities per 
subsample with the mean number of open flowers per stem. I 
excluded the 1999-2000 data from floral analyses, because 
timing of vegetation sampling in those years did not exactly 
match subsequent monitoring (Thomson 2016). All floral 
densities were square root transformed to meet assumptions. 
In 2018, P. malvifolia density in one patch (44) was more 
than double the next highest value observed in the entire 
1999-2018 data set. This difference probably resulted from 
removal of shrubby vegetation during management of an 
adjacent road. I therefore removed this single data point 
(patch/year) from all analyses. 

I used general linear mixed models (lme4 version 1.1-19, 
R version 3.1.4) to evaluate whether the relationship between 
floral resources and precipitation originally documented for 
the 1999-2014 data still held after including the newer 2015-
2018 observations (hypothesis 1) (Bates et al. 2015). Flower 
abundances for three of the four most visited plant species 
were treated as separate response variables (Scrophularia 
californica, Stachys bullata, and E. staechadifolium); the 
fourth species (P. malvifolia) is found in fewer patches and 

showed no evidence of any relationship with precipitation for 
either time period. The candidate independent fixed effects 
included all three weather variables (total growing season 
precipitation, days of spring rainfall, and precipitation 
timing), with flower patch as a random effect. I accounted for 
the time period data were collected (2000-2014 or 2015-
2018) with a categorical fixed effect. Interactions between the 
precipitation variables and time period were tested to assess 
how well the original models captured patterns in the new 
data. A significant time by precipitation term would support 
that the relationship between floral resources and 
precipitation differed from 2015-2018 compared to 1999-
2014, calling the hypothesis about their causal connection 
into question. 

The three floral resource models started with the fixed 
effects from previously published, best-fit results for each 
species from 1999-2014 (days of spring rain for Scrophularia 
californica and Stachys bullata, total growing season rainfall 
and precipitation timing for E. staechadifolium). I then 
compared alternative models that added or removed candidate 
variables, including time period by rainfall interactions 
(Appendix 1, Tab. S3; N = 5 total models for Stachys bullata, 
N = 6 each for Scrophularia californica and E. 
staechadifolium). Degrees of freedom and P values were 
generated with the package lmer.test, using Satterthwhaite’s 
approximation (Kuznetsova et al. 2017; Luke 2017).  

I next assessed whether mean A. mellifera density still 
predicted annual niche overlap (hypothesis 2) and Bombus 
density in the following year (hypothesis 3), as shown in the 
original 1999-2014 study (Thomson 2016). Niche overlap 
was quantified as percentage similarity in diet. These analyses 
used all years of available data (1999-2018), with linear 
regression for niche overlap and a mixed model with patch 
random effect for Bombus density. I again included both main 
and interaction effects of time period to test for differences 
during 2015-2018. Bombus densities were log transformed to 
eliminate skew.  

The full long-term data set (1999-2018) was also used to 
evaluate parts of hypotheses 2 and 3 not formally tested in the 
previously published analyses. I quantified Bombus preference 
for E. staechadifolium relative to other food sources as the 
proportion of total Bombus foragers observed on E. 
staechadifolium divided by the fraction of all flowers that were 
E. staechadifolium. Pearson’s correlation analyses were 
performed for relationships between (a) mean A. mellifera 
density and Bombus preference for foraging on E. 
staechadifolium, (b) Bombus preference and niche overlap, 
and (c) niche overlap and Bombus density in the following 
year. In all cases, I checked plots for evidence of differences in 
relationships between the 2015-2018 data and earlier years 
(1999-2014). If visual inspection showed no interactions 
with time period, correlation statistics were calculated for all 
years combined. Bombus preference was square root 
transformed to eliminate skew. 

Finally, I evaluated quantitative predictions of the 
previously developed fixed effects Bombus abundance model 
(hypothesis 4): 
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Bombus ~ Intercept + Apis + Scal + Pmal + preciptime + 
Apis x Scal                                                                     (1) 

where Bombus is the log-transformed density of Bombus 
per meter of transect in a given patch; Apis the mean density 
of A. mellifera /m across all observations in the previous year; 
Scal and Pmal the density of Scrophularia californica and 
Phacelia malvifolia flowers/m of transect in the patch, 
respectively; and preciptime the precipitation timing 
(phenology) variable (Appendix 1, Tab. S4). The model 
includes positive effects of P. malvifolia on Bombus 
abundance, and at higher A. mellifera densities also of S. 
californica (positive Apis x Scal interaction). In this model, 
greater numbers of A. mellifera in the previous year and later 
spring rainfall (precipitation timing) negatively affect Bombus 
abundances. 

  This original Bombus abundance model was fit using 
linear mixed effects regression and AIC-based model selection 
(Thomson 2016). I re-estimated model coefficients, to 
correct for several small errors in the 2000-2014 data for 
floral abundances. These updates did not change the best-fit 
model structure and had minimal effects on coefficients 
(Appendix 1, Tab. S4). Two of the four predictor variables 
reached values during 2015-2018 outside the range of 1999-
2014 data used in model development. First, the abundance 
of P. malvifolia for one patch in 2018 fell 7.5 standard 
deviations away from the mean for the full 1999-2018 data 
set (see above). To avoid extrapolating predictions so far 
beyond the range used for fitting the original Bombus model, 
I removed this value from the analysis. Second, mean Apis 
density in the previous year reached values up to 1.27 times 
higher than the maximum observed from 1999-2014 (Fig. 1). 
These years were retained in the analyses (see Discussion). 

I generated predicted values from the Bombus abundance 
model and compared them with observed values using 
Spearman’s rank correlations, for three test data sets: (a) 
records for patches not included in the original model fitting 
but collected during the same time period (spatially novel; pre-
2015, 3 patches, N = 12 patch/year combinations); (b) 
records from 2015-2018 for the same patches used to fit the 
Bombus model (temporally novel; 9 patches, 26 patch/year 
combinations), and (c) all 2015-2018 data, including new 
patches (both spatially and temporally novel; 14 patches, 39 
patch/year combinations). I quantified bias in model 
predictions as the mean and standard error of residuals; 
standard error bounds overlapping with zero support that 
predictions are unbiased. Predictions of the previously 
published model for A. mellifera abundance were not 
compared to observed values for 2015-2018, because the 
most recent four years of data clearly did not follow the same 
temporal trends as 1999-2014 (see Discussion). 

RESULTS 

Both A. mellifera and Bombus abundances fluctuated 
substantially in the new period of data collection (Fig. 1). 
Mean A. mellifera densities changed little in 2015 relative to 
the previous two years, but fell sharply by 58% in 2016 and 
then returned to higher levels similar to 2012-2014. Bombus 
densities remained low in 2015-2016 (mean: 0.027  

 

FIGURE 1. Variation in annual Apis mellifera (triangles, orange 
line) and Bombus spp. (circles, black line) forager density/m transect 
(patch) surveyed, represented as proportional deviations from their 
means over the entire 1999-2018 monitoring period. Points and 
error bars show means across all patches monitored in each year ± 
one standard error of the mean, respectively. 

foragers/m), then rebounded by 3.8 times in 2017 before 
dropping again slightly in 2018. 

In the new, best-fit models for drivers of floral abundance 
(hypothesis 1), rainfall effects did not interact with time 

period of data collection for any plant species (Δ AIC = -1.82 

for Scrophularia californica, Δ AIC = -1.52 for Stachys 
bullata, Δ AIC = -1.96 for E. staechadifolium; Appendix 1, 
Tab. S3). More days of spring rain corresponded with higher 
floral abundances of key forage plants across all years (2000-
2018), ranging from a very strong response for Scrophularia 
californica to a marginal one by Stachys bullata (Tab. 1; 
Appendix 2, Fig. S1). Days of spring rain replaced total 
growing season precipitation as the most explanatory weather 
variable for E. staechadifolium. Scrophularia californica was 
less abundant in 2015-2018 than in 2000-2014, regardless of 
rainfall. Eriophyllum staechadifolium showed a decline similar 
to but much weaker than the one for S. californica. Later 
phenology decreased E. staechadifolium abundance at the time 
of annual monitoring, but increased Stachys bullata, and to a 
lesser degree also increased Scrophularia californica.  

Across both time periods (1999-2018), higher A. 
mellifera density corresponded to reduced niche overlap with 
Bombus (hypothesis 2; Fig. 2A, Tab. 2). Greater A. mellifera 
density in the previous year strongly predicted lower mean 
Bombus density (hypothesis 3; Fig. 2B, Tab. 2). Bombus 
preference for foraging on E. staechadifolium went down in 
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TABLE 1. Results of mixed effects models evaluating how numbers of open flowers for three key forage plants responded to rainfall and 
precipitation timing (phenology), both in the 2000-2014 data originally used to develop predictive models and in 2015-2018.  The precipitation 
timing (phenology) measure was calculated as the mean daily rainfall weighted by day in year, for Jan. 1 to July 1; higher values indicate more rainfall 

happened later in spring. Rainfall did not interact with time period for any plant species (Δ AIC = -1.82 for Scrophularia californica, Δ AIC = -1.52 

for Stachys bullata, Δ AIC = -1.96 for Eriophyllum staechadifolium). 

Forage plant Factor Estimate SE t df P Δ 
AIC 

Scrophularia californica Days spring rainfall 0.010 0.003 2.76 106.62 0.007 5.67 

 Precipitation timing 0.010 0.01 1.92 103.87 0.056 1.66 

 Time (2015-2018) -0.125 0.04 -3.05 113.94 0.003 7.02 

        

Stachys bullata  Days spring rainfall 0.003 0.002 1.80 110.79 0.075 1.32 

 Precipitation timing 0.008 0.002 3.25 107.85 0.002 8.42 

 Time (2015-2018) -0.007 0.02 -0.37 116.93 0.72 -1.88 
        

Eriophyllum staechadifolium Days spring rainfall 0.022 0.01 2.16 106.02 0.033 2.72 

 Precipitation timing -0.052 0.01 -3.47 104.82 0.0008 9.65 

 
Time (2015-2018) -0.241 0.12 -2.01 110.28 0.047 1.86 

 

 

 

           

FIGURE 2. Relationships between (A) Apis mellifera forager density/m of transect and niche overlap with Bombus in the same year, and (B) A. 
mellifera forager density/m in the previous year and log-transformed Bombus density/m transect. Points represent years (means for A. mellifera 
density) in panel (A), and individual patches in panel (B). Black circles: 1999-2014, orange triangles: 2015-2018. Lines and gray shading show best-
fit regression predictions and 95% confidence bounds, respectively, for the full 1999-2018 data set. 

years with higher A. mellifera density (hypothesis 2; t = -2.25, 
df = 15, P = 0.04, r = -0.50; Appendix 2, Fig. S2A). 
Reductions in Bombus use of E. staechadifolium correlated 
marginally with lower niche overlap (hypothesis 2; t = 2.07, 
df = 15, P = 0.056, r = 0.47; Appendix 2, Fig. S2B). Niche 
overlap strongly, positively associated with Bombus density in 
the following year (hypothesis 3; t = 3.26, df = 12, P = 
0.007, r = 0.69; Appendix 2, Fig. S3). Dynamics in 2015-

2018 followed the same general patterns as in 2000-2014 
(Appendix 2, Fig. S2, Fig. S3). When A. mellifera abundances 
dropped in 2016-17, Bombus preference for E. 
staechadifolium went up from very low levels (2015 = 0.01) 
to moderately high levels (2016 = 0.41, 2017 = 0.34). Niche 
overlap likewise increased, from a range of 0.09-0.12 across 
the three previous years (2013-2015) to 0.29-0.35 in 2016-
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TABLE 2. Results of linear fixed (Niche overlap) and mixed effects (Bombus density) models testing the relationships between mean A. 
mellifera/m and: (top) niche overlap with Bombus in the same year, (bottom) log-transformed Bombus foragers/m in the following year. 

Response Factor Estimate SE t df P 

Niche overlap Mean Apis/m -0.84 0.18 -4.67 1 0.0004 

 Time period (2015-2018) -0.28 0.21 -1.37 1 0.19 

 Time period x Apis/m 0.72 0.41 1.77 1 0.10 
       

Log(Bombus/m) Apis/m previous year -3.57 0.64 -5.60 129.36 <0.0001 

 Time period (2015-2018) 0.82 0.65 1.25 137.70 0.21 

  Time period x Apis/m -0.73 1.33 -0.54 132.27 0.58 

 
 
2017. However, niche overlap remained at 0.34 in 2018 even 
as A. mellifera abundances increased. 

Predictions from the fixed effects Bombus abundance 
model correlated strongly with observed densities for the 
1999-2014 patch data not used in model fitting (spatially 
novel; hypothesis 4a; rho = 0.87, P < 0.001; Appendix 2, Fig 
S4). These predictions were relatively unbiased (mean ± SE 
of residuals = 0.18 ± 0.30). Model predictions likewise 
correlated with the 2015-2018 observations (both spatially 
and temporally novel; hypothesis 4c; rho = 0.59, P < 0.001; 
Fig. 3A), particularly for patches included in the original 
model fitting (only temporally novel; hypothesis 4b; rho = 
0.69, P < 0.001). However, the model underpredicted 
observed Bombus densities in 2015-2018, showing evidence 
of bias (mean ± SE of residuals: all 1999-2014 patches = 
0.86 ± 0.20, 1999-2014 patches included in model fitting = 
0.55 ± 0.26).  

I carried out a post-hoc analysis to assess potential sources 
of bias in model predictions. Individual years varied 
substantially in residual variation, with differences in 
flowering or Bombus phenology one potential explanation 
(Fig. 3A, Fig. 4A). The original model used a measure of 
precipitation timing to control for phenological variation 
among years (see Methods). Between 2015 and 2018 this 
relationship between precipitation timing and floral 
phenology was much weaker, and the slope differed (time 
period by precipitation timing interaction, t = 6.6, df = 6, P 
< 0.001; Appendix 2, Fig. S5). 

I calculated corrected values for the precipitation timing 
(phenology) predictor in 2015-2018 from a regression of the 
2009-2014 data, effectively putting 2015-2018 data on the 
same phenology scale used in fitting the original model. This 
correction slightly improved correlations between predicted 
and observed (rho = 0.64 for all patches, rho = 0.79 for those 
included in model fitting; Fig. 3B). Bias also went down, 
although the model still consistently underpredicted Bombus 
abundances for patches not included in the original fitting 
(mean ± SE of residuals: all patches = 0.48 ± 0.18, included 
patches = 0.19 ± 0.22; Fig. 3B). For all patches across the full 
data set (1999-2018), individual years likewise tended to 
show bias towards model over or under prediction (Fig. 4). 

 

DISCUSSION 

Challenging models with novel data is an important way 
to evaluate whether they capture key causal mechanisms and 
not just correlations. Assessing model transferability also helps 
define the limits of extrapolation, both spatially and 
temporally. The analyses presented here show that a simple 
model based on abundance of key forage plants and density of 
a non-native competitor can qualitatively predict observations 
from new years (temporally novel) and, on a local scale, also 
new flower patches (spatially novel). The findings further 
strengthen evidence that floral resources are an important 
driver of Bombus abundances, and that in California coastal 
scrub rainfall and competition with Apis mellifera mediate 
resource availability.  

All three hypotheses about the mechanistic links between 
floral resources and Bombus abundance trends were supported 
by these new analyses. First, precipitation (days of spring 
rainfall) predicted floral abundance for all three forage plants 
across both time periods, but most strongly for a species 
preferred by Bombus (Scrophularia californica) (hypothesis 1; 
Tab. 1). Interestingly Scrophularia californica and to some 
extent also E. staechadifolium flower numbers were lower in 
2015-2018 regardless of spring rain (Tab. 2). Both perennial 
and annual plant communities across California show 
persistent negative effects of the 2011-2016 drought, even 
since the well above-average rain year of 2016-2017 
(Harrison et al. 2018; Okin et al. 2018). Over the last decade, 
bee forage plants in some study patches have been replaced by 
highly drought-tolerant species such as Baccharis pilularis ssp. 
consanguinea and Toxicodendron diversilobium (Kidder 
2015). These patterns support both within-year and long-
term negative effects of drought on floral resources that in 
turn reduce Bombus abundances. 

The new findings presented here also strengthen support 
for a key role of competition with A. mellifera in Bombus 
declines at this site, particularly competition for the most 
abundant floral resource (E. staechadifolium). As predicted 
(hypothesis 2), higher A. mellifera densities reduced Bombus 
preference for E. staechadifolium and decreased niche overlap, 
as would be expected when competition intensifies. In turn, 
lower niche overlap corresponded with lower Bombus 
abundance in the following year (hypothesis 3). These  
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FIGURE 3. Relationships between the independently predicted 
and observed Bombus forager density/m transect in 2015-2018, for 
predictions made using either the (A) original or (B) corrected values 
of the precipitation timing (phenology) fixed effect variable. Both 
predicted and observed values are shown on the same log scale used 
to fit the original model with data from 1999-2014. Lines show 
where a 1:1 relationship would fall. Each point represents a single 
patch within a given year; open symbols are patches included in the 
original model fitting, and closed symbols new patches independent 
of the model fitting. 

patterns are consistent with the explanation that at higher 
abundances A. mellifera largely exclude Bombus from foraging 
on E. staechadifolium, reducing Bombus reproductive success 
and therefore population numbers in the next year. 
Eriophyllum staechadifolium flowering lags other key forage 
plants, constituting on average 49% of inflorescences with 
open flowers during the monitoring window but over 70% by 
the end of the flight season (1999: 43.1% monitoring 
window, 74.2% August; 2000: 64.7% monitoring window, 
82.1% August). In parallel, niche overlap with A. mellifera 
intensifies later in the Bombus flight season as the diversity 
and abundance of floral resources declines (Thomson 2006). 
Late season floral resources may be particularly important to 
queen production in bumble bee colonies (Rundlöf et al. 
2014; Thomson & Page 2020). For example, availability of 
late-flowering Brassica crops correlated with greater Bombus 
colony reproduction in a European agricultural landscape 
(Hass et al. 2019). Loss of late-season resources has also been 
connected to increased extinction risk for British bees (Balfour 
et al. 2018).  

Reduced access to the aster E. staechadifolium potentially 
affects the amount, diversity, and nutritional characteristics of 
collected pollen, all associated with Bombus colony 
development and reproductive success (Thomson & Page 
2020). Intriguing recent research suggests that aster pollen 
may benefit bumble bee health by altering microbiome 
composition and promoting parasite resistance (Giacomini et 
al. 2018; LoCascio et al. 2019; Fowler et al. 2020). 
Nutritional status and pathogen load in newly emerged queens 
could affect overwinter survival and nest establishment success 
in the following spring (Woodard et al. 2019). 

Apparent competition due to parasite or disease 
transmission from A. mellifera into Bombus populations is an 
important alternative hypothesis for negative correlations 
between their abundances (Fürst et al. 2014). Disappearance 
of the once widespread B. occidentalis along the Pacific coast 
of North America has been linked with introduction of the 
fungal pathogen Nosema bombii, but occurred before this 
study began in 1999 (Cameron et al. 2016). Further, apparent 
competition does not explain why reduced sharing of floral 
resources correlates so strongly with Bombus declines. 
Increased niche partitioning seems likely if anything to reduce 
the frequency of interspecific disease transmission at flowers 
(Adler et al. 2021). 

The fixed effects model developed for Bombus 
abundances from 1999-2014 also proved effective for 
qualitatively predicting new observations (hypothesis 4). As 
the goal of modelling in this case was to identify key drivers 
rather than precisely predict future dynamics, this result is 
encouraging. Still, limitations identified in model validation 
can help illuminate potential gaps in our mechanistic 
understanding of drivers. The model performed best for new 
patches observed over the same time period used in model 
fitting (spatially novel; rho = 0.89; Appendix S1, Fig. S4). 
These patches were all within 100 m of those used in fitting 
the original model, well within the foraging range of both A. 
mellifera and Bombus. Most studies on spatial transferability 
of ecological models involve much larger distances, for 
example in predicting species distributions. At the same time,  
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FIGURE 4. Mean ± one standard error of the mean for model 
residuals across all patches monitored in each year, for predictions 
made using either the (A) original or (B) corrected values for the 
precipitation timing (phenology) fixed effect variable in 2015-2018. 
Black circles show years used in model development, and orange 
triangles new years used to evaluate the model. 

environmental similarity rather than distance per se appears to 
determine how well models extrapolate spatially (Yates et al. 
2018). The Bombus abundance model also performed well 
when predicting new years for the same patches used in the 
original model fitting, after correcting the precipitation timing 
variable (temporally novel; rho = 0.79). This finding is 
notable given that the predictions required extrapolating 
beyond the range of A. mellifera densities used to develop the 
original model (see Methods, Fig. 1). 

However, including new patches in the 2015-2018 data 
(hypothesis 4c, both spatially and temporally novel) led to 
bias, with underestimation of Bombus abundances. This may 
reflect that the two completely new patches added from 2015-
2018 were slightly further away (150 m and 1 km). The 
density of nesting sites and colonies within close foraging 

range of these patches might have differed as a result, changing 
the relationships between floral abundances and bee 
abundance. Corrected residuals for these two patches alone 
averaged 1.28 ± 0.48 (N = 5). However, it is also possible 
that non-random patch selection promoted bias in 
predictions. The two completely new patches were 
deliberately chosen from areas that still support substantial 
numbers of the primary bee forage plants. In contrast, most 
patches sampled from 1999-2014 were established early in 
the study before drought-related declines in floral abundance 
began (Thomson 2016). These two potential explanations 
lead to different conclusions about the limits of extrapolation 
for the Bombus abundance model. If expanding the spatial 
scale of the plots rather than non-random patch selection led 
to bias, adding predictors that capture landscape variation may 
be necessary to make the model more generalizable. 

Across both time periods, most of the imprecision in 
estimates of Bombus abundance was related to variation 
between years, rather than variation among patches within 
years (Fig. 4). This difference may reflect that foraging 
behaviour and patch selection likely drive most within-year 
variation, while between-year variation is strongly influenced 
by population change. A myriad of abiotic and biotic factors 
potentially influences Bombus populations (Jha & Kremen 
2013; Crone & Williams 2016), so it is unsurprising that a 
model including few independent variables did not fully 
predict abundance dynamics. At the same time, simpler 
models, or those with a few major predictors, often 
outperform more complex models when challenged with out-
of-sample data (Wenger & Olden 2012; Oliver & Roy 2015; 
Clark et al. 2020). 

Feral A. mellifera numbers also showed high interannual 
variability, with the causes as yet unclear (Fig. 1). In the late 
1990s, spread of Varroa destructor led to major losses of feral 
A. mellifera colonies in the central valley of California (Kraus 
& Page 1995). Estimating population sizes for feral A. 
mellifera is very difficult (Utaipanon et al. 2019), and few 
studies assess whether they respond to parasites in the same 
way as domesticated colonies (Thompson et al. 2014). Still, a 
handful of studies document A. mellifera populations 
apparently resistant to V. destructor (Seeley 2007; Locke 
2016). Feral A. mellifera also have been shown to dominate 
foraging in other southern California coastal locations (Hung 
et al. 2019). My findings here suggest that a better 
understanding of how much and why feral A. mellifera 
numbers fluctuate may be key to conservation planning for 
Bombus in California coastal scrub. 

This study adds to growing evidence that sustaining floral 
resources is critical to bee populations, and reinforces that 
both drought and competition from Apis mellifera are 
reducing Bombus access to such resources in California coastal 
scrub. These findings also demonstrate the value of simple, 
mechanistically-framed models, not only in understanding 
past patterns of change but for qualitatively predicting 
spatially and temporally novel data. Analyses that document 
trends in pollinator abundances play an important part in the 
emerging picture of pollinator declines, but trends can change 
for reasons that may be unclear (Thomson 2019). Models 
based on potential drivers of population dynamics can help us 
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test hypotheses about the underlying causes of change and 
develop better predictions and management strategies. 
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