

DOI: 10.26786/1920-7603(2021) 673

APPENDIX 2. EXAMPLES OF STUDIES ASSESSING VARIATION IN SELECTION ON FLOWER-POLLINATOR FIT TRAITS ACROSS MULTIPLE POPULATIONS, YEARS, OR EXPERIMENTAL TREATMENTS.

Table S1. Examples of studies assessing variation in selection on flower-pollinator fit traits across multiple populations, years, or experimental treatments. The column 'CV mismatch' is computed by scaling the standard deviation in the mismatch between the relevant floral and pollinator traits by the mean of the floral trait, and thus gives the variation in mismatch among studies as a percentage of the size of the floral trait.

Species	Level of analysis	n	Pollinator trait	Floral trait(s)	CV mismatch	Main findings	Reference
Dalechampia scandens	Populations	8	Body length	Gland-stigma distance	58.6%	Selection on fit trait when mismatch occurred in combination with unreliable pollination	Albertsen et al. 2020
Caesalpinia gilliesii	Populations	7	Proboscis length	Style length	10.6%	Stronger selection on the fit trait with greater mismatch	Soteras et al. 2020
Roscoea purpurea	Populations	5	Proboscis length	Corolla tube length	4.0%	Consistent positive selection, very limited variation	Paudel et al. 2016
Nicotiana glauca	Populations	6	Bill length	Corolla tube length	19.7%	Stronger selection on the fit trait with greater mismatch	Nattero et al. 2010a
Nierembergia linariifolia	Populations	4	Oil-collecting structure	Elaiphore size		No variation in selection despite differences in mismatch	Nattero et al. 2010b
Calathea ovandensis	Years	3		Corolla length		Substantial between-year variation in selection linked to variation in pollinator assemblage	Schemske & Horvitz 1989
Cyclopogon elatus	Years	4		Nectary depth		Limited variation in selection on a fit trait, consistent with limited variation in pollinator assemblage	Benitez-Vieyra et al. 2012
Polemonium brandegeei	Experimental arrays	2		Stigma exsertion, corolla tube dimensions		Contrasting patterns of selection in experimental arrays visited by hawkmoths vs. hummingbirds	Kulbaba and Worley 2012, 2013
Ipomopsis aggregata	Years	10		Corolla tube width		Negative selection on tube width in years when hawkmoths were present in the population	Campbell and Powers 2015
Gymnadenia conopsea	Populations, treatments	4		Spur length		Differences in selection among populations and between plants exposed to day vs. night-active pollinators	Chapurlat et al. 2015
Primula secundiflora	Populations	2		Corolla tube entrance diameter		Some difference in selection between populations visited by different pollinator assemblages	Wu and Li 2017
Platanthera bifolia	Populations	4	Proboscis length	Spur length		Limited variation in selection despite differences in trait means and pollinator assemblages, possibly related to reliable pollination	Trunschke et al. 2020
Erysimum mediohispanicum	Populations	8		Corolla dimensions		Variable selection on corolla dimensions associated with variation in pollinator assemblages	Gómez et al. 2009

REFERENCES

- Albertsen E, Opedal ØH, Bolstad GH, Perez-Barrales R, Hansen T, Pélabon C, Armbruster WS. 2021. Using ecological context to interpret spatiotemporal variation in natural selection. Evolution 75: 294-309.
- Benitez-Vieyra S, Glinos E, Martin Medina A, Cocucci AA. 2012. Temporal variation in the selection on floral traits in Cyclopogon elatus (Orchidaceae). Evolutionary Ecology 26: 1451-1468.
- Campbell DR, Powers JM. 2015. Natural selection on floral morphology can be influenced by climate. Proceedings of the Royal Society B-Biological Sciences 282: 20150178.
- Chapurlat E, Ågren J, Sletvold N. 2015. Spatial variation in pollinator-mediated selection on phenology, floral display and spur length in the orchid Gymnadenia conopsea. New Phytologist 208: 1264-1275.
- Gómez JM, Perfectti F, Bosch J, Camacho JPM. 2009. A geographic selection mosaic in a generalized plant-pollinatorherbivore system. Ecological Monographs 79: 245-263.
- Kulbaba MW, Worley AC. 2012. Selection on floral design in Polemonium brandegeei (Polemoniaceae): female and male fitness under hawkmoth pollination. Evolution 66: 1344-1359.
- Kulbaba MW, Worley AC. 2013. Selection on Polemonium brandegeei (Polemoniaceae) flowers under hummingbird pollination: in opposition, parallel, or independent of selection by hawkmoths? Evolution 67: 2194-2206.
- Nattero J, Cocucci AA, Medel R. 2010. Pollinator-mediated selection in a specialized pollination system: matches and mismatches across populations. Journal of Evolutionary Biology 23: 1957-1968.
- Nattero J, Sérsic AN, Cocucci AA. 2010. Patterns of contemporary phenotypic selection and flower integration in the hummingbird-pollinated Nicotiana glauca between populations with different flower-pollinator combinations. Oikos 119: 852-863.
- Paudel BR, Shrestha M, Burd M, Adhikari S, Sun YS, Li QJ. 2016. Coevolutionary elaboration of pollination-related traits in an alpine ginger (Roscoea purpurea) and a tabanid fly in the Nepalese Himalayas. New Phytologist 211: 1402-1411.
- Schemske DW, Horvitz CC. 1989. Temporal variation in selection on a floral character. Evolution 43: 461-465.
- Soteras F, Rubini Pisano MA, Bariles JB, More M, Cocucci AA. 2020. Phenotypic selection mosaic for flower length influenced by geographically varying hawkmoth pollinator proboscis length and abiotic environment. New Phytologist 225: 985-998.
- Trunschke J, Sletvold N, Ågren J. 2020. Manipulation of trait expression and pollination regime reveals the adaptive significance of spur length. Evolution 74: 597-609.
- Wu Y, Li QJ. 2017. Phenotypic selection on flowering phenology and pollination efficiency traits between Primula populations with different pollinator assemblages. Ecol Evol 7: 7599-7608.