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Abstract—Considering both pollinator and herbivore pressures on plant 
reproductive and defensive traits is key to understanding patterns of selection for 
plants. However, phenotypic selection studies connecting floral traits and plant 
defenses with pollinator activity and herbivore damage remain rare. We used the 
common milkweed, Asclepias syriaca (Apocynaceae), to study phenotypic selection 
on attractive and defensive traits, and nectar rewards. We measured herbivore 
(leaf damage) and pollinator activity (pollinia movement) and quantified selection 
via female (pollinia insertions and fruit number) and male fitness (pollinia 
removals). We found selection to increase plant and inflorescence size and to 
decrease floral size (i.e. petal width) via female fitness. We also detected selection 
to increase floral but not leaf latex. The lack of selection on leaf latex was 
congruent with the low herbivory observed, however we also did not observe 
florivory in the population that would explain the advantage of more floral latex. 
Interestingly, we found selection on attractive traits differed via pollinia insertions 
and fruits initiated, suggesting that something other than pollinators was driving 
selection via fruit production. In contrast to female fitness, we did not find 
selection on any trait through male fitness, suggesting no sexual conflicting 
selection, at least through these proxies. Our findings reinforce the importance of 
the direct assessment of pollinator pressures in phenotypic selection studies 
before assuming pollinators as drivers of floral evolution by natural selection. 
Further work in southern populations closer to the centre of the species range, 
where herbivory and plant defense investment are higher, may help elucidate 
selection on attractive and defensive traits. 

Keywords—Asclepias syriaca, herbivory, latex, nectar, male fitness, phenotypic 
selection 

INTRODUCTION 

Plant mutualists and antagonists such as 

pollinators and herbivores are important agents of 

selection on plant traits (Strauss 1997; Strauss & 

Whittall 2006; Caruso et al. 2019). Pollinator-

mediated selection can favor floral traits that 

increase pollinator attraction such as large floral 

displays, bright colours, or particular compounds 

of the floral scent (Parachnowitsch & Kessler 2010; 

Sletvold et al. 2016; Caruso et al. 2019; Chapurlat et 

al. 2019). However, more apparent floral signals 

may also attract antagonists such as plant 

herbivores. Attracting both your mutualists and 

antagonists can lead to patterns of conflicting 

selection on floral traits (e.g., Sletvold et al. 2014; 

Knauer & Schiestl 2017), although selection by 

pollinators and herbivores does not always lead to 

simple patterns of conflicting selection (e.g., 

Parachnowitsch & Caruso 2008; Sletvold et al. 

2014; Egan et al. 2021). Plants that require 

pollinators for reproduction may also be limited in 

their defences due to shared repellence of both 

herbivores and pollinators (Adler et al. 2012; 
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Manson et al. 2012). Furthermore, herbivores’ 

feeding, developing and/or mating on plant tissues 

can alter pollinator attraction through direct effects 

on the plant’s appearance or via herbivore-

induced defenses (Kessler et al. 2011; Burkle & 

Runyon 2016; Kessler & Chautá 2020), showing 

some of the possible complexities for these plant-

animal interactions. Much like pollinators driving 

selection on floral traits, herbivores exert selective 

pressures on plant defenses (e.g., latex exudation, 

trichome density, secondary metabolites, Agrawal 

2005, Lankau 2007); however, herbivores can also 

influence selection on plant reproductive traits 

(Parachnowitsch & Caruso 2008; Knauer & Schiestl 

2017; Ramos & Schiestl 2019; Santangelo et al. 

2019). Hence, considering pollinator and herbivore 

selection pressures on both defensive and 

reproductive traits is important to understand how 

phenotypic selection shapes plant evolution. 

   We used the common milkweed Asclepias 

syriaca L. (Apocynaceae) to study patterns of 

phenotypic selection on attractive and defensive 

traits and nectar rewards. Asclepias syriaca has a 

diverse community of pollinators and herbivores 

and has become a model system of chemical 

ecology and plant-insect coevolution (Agrawal 

2017). Pollinator activity on milkweed flowers is 

easy to detect because of its specialized pollen 

packages called “pollinia” as seen in orchids. 

Pollinia are moved as a unit by pollinators and 

because of the specialised structures, removal or 

insertion in a flower can only happen by pollinator 

activity. Therefore, insertions and removals can be 

tracked and used as a proxy of female and male 

fitness components (e.g., Morgan & Schoen 1997; 

Caruso et al. 2005; Thompson et al. 2017). While 

pollinia movements are indirect measures of male 

and female fitness, studies in other milkweed 

species have found positive correlations between 

the number of removed pollinia and seeds sired, 

suggesting pollinia removal may be a reasonable 

estimate of male fitness in milkweeds (Broyles & 

Wyatt 1990; La Rosa 2015). In previous studies of 

A. syriaca, phenotypic selection via female and 

male fitness through pollinia movement has 

shown contrasting patterns (e.g., Morgan & 

Schoen 1997), highlighting the importance of 

examining both to understand the evolution of 

traits. Measuring selection via female and male 

fitness could be especially relevant given 

herbivores may have varying effects on patterns of 

selection depending on the fitness estimate 

(Lehtilä & Strauss 1999; Thompson et al. 2017), 

however plant selection studies have mainly 

focused on female fitness due to the challenges of 

estimating male fitness for most species (Ashman 

& Morgan 2004).  

Natural selection on floral characters in A. 

syriaca populations show some variation and 

consistency between studies. Selection for 

increased floral hood dimensions is common 

(Morgan & Schoen 1997; Caruso et al. 2005; La 

Rosa & Conner 2017) but in other populations, 

selection on floral dimensions has not been 

detected (Thompson et al. 2017). While A. syriaca 

inflorescences have many flowers that only set one 

to a few fruits (Caruso et al. 2005; La Rosa & 

Conner 2017), selection for bigger display sizes 

(more flowers) is also common via fruits and/or 

seeds (Caruso et al. 2005; ) suggesting these flowers 

play a role in successful seed set despite many not 

developing into fruits. Floral nectar acts as a 

reward in these long-lived flowers (Southwick 

1983; Wyatt et al. 1992) and also plays a role in 

pollen germination in A. syriaca (Kevan et al. 1989). 

Floral nectar is an important trait mediating plant 

ecological interactions and the primary reward for 

many pollinators (Parachnowitsch et al. 2019). 

Nectar characteristics, such as amount and sugar 

concentration, can influence pollinator behaviour 

and ultimately plant outcrossing rates (Cnaani et 

al. 2006; Heil 2011; Pyke 2016). Nectar can also 

change in response to herbivory (Adler et al. 2006; 

Bruinsma et al. 2014; Hoffmeister & Junker 2017). 

In A. syriaca, herbivory may alter the sugars in 

nectar (Gustafson et al. 2023). Despite its 

importance to plant-pollinator interactions, there 

are surprisingly few studies that measure selection 

on nectar traits (reviewed in Parachnowitsch et al. 

2019) and none that connect selection on nectar to 

plant defences.  

Milkweed deploys a battery of defensive traits 

including latex, trichomes, and toxic metabolite 

compounds (Agrawal 2005; Agrawal et al. 2014; 

Jones and Agrawal 2016). Latex is a sticky 

substance that acts as both a physical and chemical 

defense because it can clog the mouthparts of 

herbivores obstructing their feeding and contains 

secondary metabolites (Agrawal 2005; Agrawal et 

al. 2008), although latex production and the 

chemical defence cardenolides appear uncoupled 



March 2024 Phenotypic selection in milkweed 75 

 

for the species (Agrawal et al. 2014). While latex is 

a constitutive defense produced without damage, 

herbivores can also induce latex exudation 

(Agrawal 2005; Rassman et al. 2009). Previous 

work detected selection to increase leaf latex and 

suggested herbivores as agents of selection on 

defensive traits (Agrawal 2005). Experimentally 

inducing defenses via jasmonic acid also led to 

selection for fewer flowers contrasting with 

selection for inflorescences with more flowers in 

control conditions (Thompson et al. 2017). The 

latter shows that antiherbivore defenses may also 

shape the evolution of flowers and reproductive 

traits through phenotypic selection, yet studies 

remain rare.  

In addition to the vegetative parts, flowers can 

also have defensive traits including floral latex, 

defensive metabolite compounds such as 

cardenolides, and deterrent volatiles in nectar 

(Raguso 2004; Parachnowitsch et al. 2012; Villalona 

et al. 2020; Gustafson et al. 2023). While floral 

defenses may protect flowers from herbivores, 

nectar robbers, and less effective pollinators, they 

may also impose costs to plant fitness by 

decreasing pollinator visits (Jones & Agrawal 2016; 

Kessler & Chautá 2020). Attraction, nectar, and 

defense traits in flowers and leaves may be linked 

via physiological pathways, co-regulation, 

pleiotropy and/or linkage showing correlated 

responses to leaf damage by herbivores (e.g. Adler 

& Irwin 2005). However, relationships among leaf, 

floral latex, nectar and how these traits evolve in 

response to selection by mutualists and 

antagonists has received little attention.  

 To address how selection acts on floral traits 

and defences, we studied a natural population of 

A. syriaca in New Brunswick (Canada). We 

measured nectar concentration, flower number 

and size, inflorescence size, and plant height as 

phenotypic traits involved in pollination, leaf and 

floral latex to estimate traits involved in plant 

defense, as well as herbivore damage. We 

estimated phenotypic selection via male (pollinia 

removal) and female fitness (pollinia insertion and 

fruits initiated) to compare these functions. We 

used pollinia movement to examine selection by 

pollinators and herbivore damage to understand 

the role of herbivores. 

MATERIALS AND METHODS 

STUDY SYSTEM 

Common milkweed, Asclepias syriaca, is a 

perennial species found in disturbed sunny 

habitats native to North America. Milkweed has 

hermaphroditic flowers that bloom from late May 

to early August, producing an indeterminate 

number of self-incompatible flowers (Pleasants 

1991). The flowers are highly modified and 

composed of five petals that unfold to release a 

showy corona with five pink/white coloured 

hoods separated by stigmatic slits (Fig. 1, 

Thompson et al., 2017; Wyatt & Broyles, 1994). 

Common milkweed produces nectar in the  

 

Figure 1. (Left) The study population of common milkweed (Asclepias syriaca), Fredericton, New Brunswick. (Right) Detail of an 
inflorescence of buds and open flowers with five hoods separated by stigmatic slits; inset shows floral measurements of petal 
width, hood width and hood length (photographs by Yedra García).
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stigmatic slits which fills into the hoods (Galil & 

Zeroni 1965). Reproduction occurs both 

vegetatively via rhizomes and sexually by 

fertilization via pollinia (male function), that are 

inserted into stigmatic slits of another flower 

(female function) by insect pollinators (Morgan & 

Schoen, 1997; Wyatt & Broyles, 1994). Diurnal and 

nocturnal pollinators include butterflies, bees, 

beetles and moths (Jennersten & Morse 1991; La 

Rosa & Conner 2017; Gustafson et al. 2023), 

although diurnal pollinators can lead to higher 

fitness (Morse & Fritz 1983) and some pollinators 

are less effective at moving pollinia to other 

individuals in this self-incompatible species (e.g., 

introduced honeybees, Howard & Barrows 2014). 

However, pollinia limitation has been observed 

(Morse & Fritz 1983), suggesting pollinators have 

an opportunity to drive selection on traits. There is 

a limited number of host-specific herbivores for 

milkweed and some examples include the well-

known monarch butterfly (Danaus plexippus, 

Lepidoptera) and the common milkweed bug 

(Lygaeus kalmii, Hemiptera) (Agrawal 2005; 

Birnbaum & Abbot 2018). 

FIELD SITE 

We conducted our study in a population of A. 

syriaca in Fredericton, New Brunswick, Canada 

(45°57'48.0"N, 66°36'43.3"W, Fig. 1). The site is 

within city limits in a semi-naturalized area 

between a walking/biking trail and the Nashwaak 

River. In July 2020, we ran transects separated by 5 

m across the population and tagged 120 A. syriaca 

flowering stems at least 1 m apart along the 

transects to ensure that they were independent 

individuals. Phenology varied among plants, but 

most had early-stage inflorescences with floral 

buds when selected. 

TRAIT MEASUREMENTS 

We chose nine phenotypic traits we 

hypothesized may experience natural selection in 

our population through interactions with 

pollinators and herbivores, as well as assessing 

herbivore damage. To estimate plant size, we 

measured plant height and counted the number of 

leaves for each plant coinciding with nectar 

collection measurements (between July 10-22). 

Because plant size can be an important predictor of 

fitness, especially for seed production, including it 

in selection estimates can better allow for detection 

of the targets of selection. Reproductive effort was 

estimated as the number of inflorescences and total 

number of flowers (estimated by counting flowers 

and buds at peak flowering).  

For individual flowers, we measured flower 

size and rewards. We estimated hood length and 

width, and petal width as Thompson et al. (2017) 

for five flowers per plant and used the mean value 

of flower measures for each plant. To measure 

floral nectar, we covered plants with mesh bags the 

evening before nectar collection to exclude floral 

visitors. The following morning, we collected 

nectar with microcapillary tubes (Drummond 

Scientific) and estimated sugar concentration (%) 

with a hand-held refractometer (Palm Abbe 

Misco). We were unable to accurately estimate 

nectar volume per flower because many had very 

little nectar. Therefore, nectar concentration was 

estimated from several flowers per inflorescence 

once sufficient volume was achieved in the tube (~ 

4-5 µL). Nectar collection took place across seven 

sampling days between 09:00 to 11:00 because A. 

syriaca nectar traits can vary across the day (Wyatt 

et al. 1992). Experience in the field and preliminary 

analyses found nectar concentration was sensitive 

to sampling day (F6,108 = 35.66, P < 0.001) and 

humidity varied across the sampling dates. We 

used the humidity recorded by Environment 

Canada (https://climate.weather.gc.ca/) at 10:00 to 

represent the period of nectar measurements (9:00 

to 11:00) and found a general pattern of lower 

concentrations at higher humidity (R2= 0.51, F1,101= 

107.37, β humidity= -0.80, P < 0.001). Therefore, we 

used the residuals from the model with humidity 

as a predictor of nectar concentration, as our nectar 

variable in the selection analyses to control for the 

sampling date effect (see below).  

To assess plant defences, we measured floral 

and leaf latex. We followed the established 

protocol for leaf latex measurements in A. syriaca 

(e.g. Bingham & Agrawal 2010): cutting the leaf tip 

(5mm) of a newly expanded undamaged leaf at the 

top of each plant and collecting extruded latex on 

pre-weighted filter paper. Each latex sample was 

stored individually and weighed the same 

afternoon as collecting to quantify latex wet 

weight, which approximates the physical defence 

of latex flowing to a wound. Samples were then 

dried and re-weighed for latex dry weight, which 

is an estimate of the chemical constituents in latex. 

We assessed floral latex for two flowers by cutting 
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the floral stem and collecting latex as for the leaves 

(similar to Parachnowitsch et al. 2012). We used 

the mean in analyses. While we cannot exclude 

that our manipulation may have had some effect 

on pollinator visitation, we expect it to be minor as 

we only damaged one leaf (leaves: mean = 20.6 ± 

4.10) and two flowers (flowers: mean = 122.8 ± 

54.69) per individual. Induced responses to 

herbivory can have a range of effects in A. syriaca 

(e.g. Van Zandt & Agrawal 2004; Thompson et al. 

2017), however, the small physical damage alone is 

unlikely to fully induce a response and all plants 

received the same damage so effects should be 

comparable. To assess herbivory, we counted the 

number of leaves per plant with damage and 

estimated the extent of leaf damage using 

photographs. The amount of leaf area (cm2) 

consumed by herbivores was estimated using 

LeafByte (Getman-Pickering et al 2020). We also 

calculated a damage index as Agrawal (2005), 

dividing the number of damaged leaves by the 

total leaves on the plant.  

To examine pollinia movements, we collected 

five flowers from two inflorescences per plant at 

peak flowering. Flowers were stored in 80% 

ethanol until assessment with a microscope; five of 

these were also measured for flower size (above). 

For male fitness, we counted pollinia removals by 

verifying if the pollinia were present in the 

pollinium chamber. Female fitness was measured 

by probing all stigmatic slits to count pollinia 

insertions. We used the total number of removals 

and insertions from ten flowers per plant as fitness 

estimates in the selection analyses. We also 

estimated female fitness by counting initiated 

fruits per plant after flowering was finished (as in 

Caruso et al. 2005). Initiated and mature fruits in 

A. syriaca are correlated (Willson & Rathcke 1974), 

suggesting it is a reasonable estimate of fruit 

number. 

STATISTICAL ANALYSES 

We estimated phenotypic selection using 

multiple regression to calculate selection gradients 

and determine the targets of selection (Lande & 

Arnold 1983). We first determined which traits to 

include in our model by calculating Pearson’s 

correlation coefficients (Table S1) and confirmed 

multicollinearity was not a problem in the final 

model by calculating variance inflation factors 

(VIF) with the ‘car’ package in R. The final model 

included inflorescence number and size, hood 

length and width, petal width, nectar 

concentration, floral and leaf latex, plant height 

and the damage index. Because the wet and dry 

measures of leaf latex were highly correlated 

(Table S1), we ran separate models with the wet 

and dry measures. However, all models with dry 

latex showed no evidence for selection on latex 

(Table S2) so for simplicity we present the models 

with wet latex measures. We calculated variance 

standardized selection gradients by standardizing 

to a mean of 0 and variance of 1. We also calculated 

mean standardized selection gradients to better 

understand the strength of selection on traits 

(Matsumura et al. 2012; Opedal 2021); the rank 

order of traits was similar for both models (Table 

1). We estimated selection via female fitness for 

both inserted pollinia and initiated fruits and 

selection through male fitness by pollinia removal. 

We used relative fitness in our models by dividing 

by the population mean. We did not have the 

statistical power to detect non-linear selection and 

exclude these analyses. 

RESULTS 

We observed pollinators visiting the study 

population such as honeybees (Apis mellifera) and 

bumblebees (Bombus spp., likely B. impatiens and B. 

ternarius based on field identification), as well as 

other insects including butterflies and flies. We did 

not visit the population during the night to observe 

nocturnal pollinators. There was evidence for 

pollinia removal and insertion on one or more of 

the 10 flowers sampled for each plant (removals: 

mean = 1.0 ± 0.68 per flower; insertions: mean = 0.2 

± 0.25 per flower, N= 119), suggesting that 

pollinators were active in the population. Pollinia 

insertion and removal was positively correlated (r 

= 0.44, P <0.001) but neither was correlated with 

fruit initiation (insertion: r = -0.12, removal: r = 

0.12). Evidence of insect damage was minimal 

which was reflected in the damage index (Table 

S1), although one D. plexippus larva and a few 

adults were observed in the population. Only 34% 

of our plants had any evidence of damaged leaves 

(N = 35 plants) and generally there was little leaf 

area consumed (< 3%), although two plants had 

approximately 27% and one had 40% tissue 

consumed. The phenotypic traits measured 

generally varied among the 103 individuals in our 

final dataset (Table S1). Excluded individuals were 
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Table 1. Variance-standardized (β ± SE) and mean-standardized (βµ ± SE) linear selection gradients on ten plant traits of Asclepias 
syriaca (N =103) via fruits initiated, pollinia inserted and pollinia removed. Significant selection gradients are in bold. *P < 0.05, 
**P < 0.01. 

Trait Female fitness – 

fruit 

Female fitness – 

inserted pollinia 

Male fitness – 

pollinia removal 

β ± SE βµ± SE β ± SE βµ± SE β ± SE βµ± SE 

Inflorescence 
number 

 0.464 ± 0.137** 1.183 ± 0.349** -0.016 ± 0.11 -0.040 ± 0.281 -0.013 ± 0.08 -0.033 ± 0.204 

Inflorescence 
size 

 0.291 ± 0.133* 0.955 ± 0.436* -0.001 ± 0.107 -0.002 ± 0.351  0.052 ± 0.078 0.171 ± 0.255 

Hood length -0.164 ± 0.138 -1.630 ± 1.368 -0.03 ± 0.111 -0.299 ± 1.010  0.049 ± 0.081 0.491 ± 0.80 

Hood width  0.116 ± 0.138 1.831 ± 2.174  0.044 ± 0.111 0.688 ± 1.75 -0.048 ± 0.081 -0.756 ± 1.272 

Petal width  0.07 ± 0.144 0.976 ± 1.993 -0.235 ± 0.116* -3.265 ± 1.604* -0.053 ± 0.084 -0.731 ± 1.66 

Nectar 
concentration 

-0.082 ± .0126 0.001 ± 0.002  0.048 ± 0.101 -0.001 ± 0.001 -0.039 ± 0.074 0.001 ± 0.001 

Floral wet latex   0.056 ± 0.141 0.072 ± 0.182  0.326 ± 0.114** 0.421 ± 0.147*  0.123 ± 0.083 0.159 ± 0.107 

Leaf wet latex  0.038 ± 0.140 0.044 ± 0.160 -0.027 ± 0.112 -0.031 ±0.129 -0.047 ± 0.082 -0.054 ± 0.094 

Plant height  0.217 ± 0.145 1.601 ± 1.074  0.132 ± 0.117 0.975 ± 0.864 -0.002 ± 0.085 -0.014 ± 0.628 

Damage index  0.118 ± 0.128 0.059 ± 0.064  0.009 ± 0.103 0.005 ± 0.051 -0.01 ± 0.075 -0.005 ± 0.037 

 

missing data for one or more traits. Taller plants 

Our flower size measurements were positively 

correlated but interestingly, hood and petal widths 

were also positively correlated with flower latex 

(Table S1). We found that plants with higher leaf 

latex also produced more latex at the flowers and 

generally more latex was exuded from the flower 

stem than the leaf tips. Correlations with other 

traits were not always consistent for the two latex 

measures. Plants with more concentrated nectar 

had lower leaf latex production, suggesting water 

may constrain both leaf latex and nectar 

production.  

We found significant patterns of phenotypic 

selection on floral display, floral size, and latex 

production via female fitness in A. syriaca (Table 1). 

Interestingly, selection varied between our two 

measurements of female fitness (i.e., pollinia 

inserted and fruits initiated). While we found 

selection for smaller petals and higher floral latex 

production via pollinia inserted (Fig. 2 A, B), we 

found selection to increase plant size (i.e., number 

of inflorescences) and inflorescence size (i.e., 

number of flowers) via fruits initiated (Fig. 2 C, D). 

In addition, selection for increasing number of 

inflorescences was stronger than selection on 

inflorescence size (Table 1). In contrast to female 

fitness, we did not detect significant patterns of 

phenotypic selection acting through male fitness 

(i.e., pollinia removed) on any of the study traits 

(Table 1). We also found no evidence of selection 

against herbivory via the damage index through 

any of our fitness estimates. 

DISCUSSION 

Few traits were under selection in our 

population of A. syriaca, despite including a wide 

range of traits related to pollinator attraction, 

mechanical fit of pollinators in the flowers, 

rewards, and herbivore defense. Pollinator-

mediated selection estimated via pollinia 

movement was only detected for pollinia 

insertions, not removals, and only for smaller 

petals and more floral latex. Pollinator-mediated 

selection on floral traits is common and often 

stronger than other biotic factors (Caruso et al. 

2019), as was seen here with the lack of effect by 

herbivores. Given that herbivory on A. syriaca is 

generally low in New Brunswick (Woods et al. 

2012) and milkweed defences are also generally 

lower towards the northern range edge (Rasmann 

& Agrawal 2011; Woods et al. 2012; Agrawal et al. 

2022), it was not surprising that we found little 

herbivory (i.e. less than 35% of study plants 

showed any signs of foliar damage) and no 

selection to reduce herbivory as seen in Agrawal 
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Figure 2. Variance-standardized linear phenotypic selection gradients (β ± SE) for (A) petal width, (B) floral wet latex weight, (C) 
inflorescence number and (D) inflorescence size. Selection on petal width and floral wet latex acted via pollinia inserted and on 
inflorescence number and size via fruits initiated. Selection gradients are represented with added-variable plots. 

 

(2005). Considering the geographic variation in 

ecological interactions across A. syriaca’s range, we 

might expect geographic differences in selection 

on this diverse set of traits, especially in 

populations with higher herbivory that may drive 

adaptation in defence traits such as latex (Agrawal 

2005). Indeed, defensive traits such as cardenolide 

concentration in seeds of A. syriaca show a 

geographical cline with increasing levels towards 

the centre of the species range (Agrawal et al. 

2022). Geographic variation in natural selection 

can be driven by differences in selective pressures 

including both from herbivores and pollinators 

and can be important for local adaptation 

(Siepielski et al. 2013, 2017), therefore it would be 

interesting to compare selection on floral and leaf 

latex across the species range to see if pollinator-

mediated selection on floral latex is common. 

We found selection on floral but not leaf latex 

via pollinia insertion in our population of A. 

syriaca. Few studies have examined latex in flowers 

or flowing to flowers to allow comparisons. In 

Lobelia siphilitica, latex to floral structures likely 

help protect the developing fruits from attack by 

their predispersal seed predator which attacks 

early flowering plants (Parachnowitsch & Caruso 

2008). Latex production is related to flowering time 

in this species (Parachnowitsch et al. 2012), 

suggesting a relationship between the likelihood of 

herbivory and the production of latex defence. In 

A. syriaca, florivory by floral specialists and 
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generalist herbivores suggests there could also be 

a defensive function of floral latex (Matter et al. 

1999; Baker & Potter 2018). Florivory can also be 

costly, for example, floral damage by the Japanese 

beetle Popillia japonica, which preferentially feeds 

on the nectaries and ovaries, can reduce seed set by 

90% (Matter et al. 1999). Furthermore, plant 

defenses in the milkweeds, such as cardenolide 

content and concentration, can vary among tissues 

in response to herbivores specialized on different 

plant parts (Manson et al. 2012; López-Goldar et al. 

2022). While this suggests that selection on latex in 

A. syriaca might vary between flowers and leaves 

in response to different herbivory pressures, 

information on patterns of latex variation between 

floral and foliar tissues is scarce. We cannot 

attribute the selection on floral latex to leaf 

herbivores and although not measured, we also 

did not observe evidence of florivory during field 

sampling. Thus, the drivers of selection on floral 

latex and not leaf latex, despite their positive 

correlation in the population, warrants further 

study. Furthermore, the connection between floral 

latex and pollinia insertion needs investigation to 

understand the mechanisms because pollinators 

are unlikely to be directly affected by the latex. 

Underlying relationships such as chemical 

defences in nectar and latex may explain these 

patterns (Manson et al. 2012) but need further 

work to confirm.  

Nectar concentration was highly variable 

between individuals, but generally not correlated 

with other traits and was not a target of selection 

in this population. Non-significant selection for 

nectar traits is common (Parachnowitsch et al. 

2019), although there are too few estimates to 

compare with selection on other well-studied 

floral traits (Harder & Johnson 2009; Caruso et al. 

2019). Nectar production may be costly for A. 

syriaca (Southwick 1984) and likely influences a 

mix of floral visitors (Willson & Bertin 1979; Fritz 

& Morse 1981; Gustafson et al. 2023). While insect 

pollinators often prefer more concentrated nectars, 

nectar rewards are likely shaped by the plants 

interests as much as, or more so, than the 

pollinators (Pyke 2016; Parachnowitsch et al. 2019). 

Despite the challenges of quantifying nectar traits 

due to individual and environmental influences on 

the trait (e.g. Southwick & Southwick 1983; Wyatt 

et al. 1992), further study of selection on nectar 

traits in A. syriaca will allow more comparisons to 

its better studied plant defences and floral 

characters. 

Unlike Morgan and Schoen (1997), we saw no 

evidence for conflicting selection on A. syriaca 

traits between male and female fitness estimated 

by pollinia removals and insertions in our 

population. Interestingly, Thompson et al. 2017 

also did not observe selection on any A. syriaca 

traits via pollinia removal and Caruso et al. (2005) 

only found significant selection via pollinia 

removal to increase A. syriaca hood length in one 

of their three experimental conditions (resource 

addition). While selection via male fitness remains 

an important goal in understanding evolution in 

hermaphroditic plants (Conner et al. 1996; 

Ashman & Morgan 2004; Austen & Weis 2016; 

Briscoe Runquist et al. 2017; Christopher et al. 

2020) and sexual conflict has also been observed in 

other species (e.g. Maad & Alexandersson 2004), 

the difference between flower number and fruits in 

milkweed inflorescences may influence how 

strongly sexual conflict translates into evolution of 

floral traits. Pollinia movement therefore likely 

reflects pollinator preferences and behaviour on 

the flowers, but ultimately might be a weak proxy 

for fitness and pollinator visitation may better 

predict insertions than removals for A. syriaca (La 

Rosa & Conner 2017). Unlike comparing pollinia 

movements, we found the two stages of female 

fitness did show differences, in line with previous 

work on A. syriaca (Caruso et al. 2005; La Rosa & 

Conner 2017). Different mechanisms including 

resource limitation in fruits produced, 

incompatible self-pollinia and/or ineffective 

pollinia deposition may have weaken the link 

between inserted pollinia and number of fruits, 

ultimately resulting in lack of consistency in 

selection estimates from the two female fitness 

components (Caruso et al. 2005; La Rosa & Conner 

2017). In addition, selection for higher resource 

acquisition or by non-pollinator selective agents 

might have also contributed to selection for 

increased attractive traits at the plant level such as 

inflorescence number and size through fruits 

initiated but not through pollinia inserted in our 

population (Sletvold et al. 2010; reviewed by 

Caruso et al. 2019). Overall, the different targets of 

selection between the pollinia and fruits highlights 

the importance of considering fitness components 

involved in different levels of the pollination 

process and the continued need to assess the role 
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of pollinators on natural selection via direct 

measurements rather than assumptions that 

pollinators are responsible for floral evolution 

(Ashman & Morgan 2004; Caruso et al. 2019; 

Sletvold 2019). 
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